希尔排序(Shell Sort)

希尔排序(Shell Sort)

一、基本思想

希尔排序是插入排序的一种,也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定的排序算法,是记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键字越来越多,当增量减至1时,整个文件恰被分成一组。插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率。

二、实现步骤

在插入排序中提高效率,通过增大移动的步幅来提高效率。在插入排序中,每次增大移动一大步从而快速将元素移动到其应该所在大致位置。

算法步骤:

  1. 将整个有 n n n 个元素的数组序列分割成 g a p ( g a p = n / 2 ) gap(gap=n/2) gap(gap=n/2) 个子序列,第 1 1 1 个数据和第 n / 2 + 1 n/2 + 1 n/2+1 个数据分为一组;
  2. 一次循环中,在每个子序列中分别采用直接插入排序;
  3. 然后缩小间隔 g a p gap gap,即 g a p = g a p / 2 gap=gap/2 gap=gap/2,然后变为 n / g a p n/gap n/gap 个子序列,重复上述的子序列划分和排序工作;
  4. 不断重复上述过程,随着序列减少最后变为一个,即完成了整个排序

三、时间复杂度的分析

由于不断折半步长,时间复杂度从三层循环中产生,故平均、最坏时间复杂度为: Θ ( n ( log ⁡ 2 ( n ) ) 2 ) \Theta(n(\log_2(n))^2) Θ(n(log2(n))2) O ( n ( log ⁡ 2 ( n ) ) 2 ) O(n(\log_2(n))^2) O(n(log2(n))2)。当最后一层循环恰好不需要进行元素交换,即各分组恰好符合排序要求,则最好时间复杂度为: Ω ( n log ⁡ 2 ( n ) ) \Omega(n \log_2(n)) Ω(nlog2(n))

四、空间复杂度的分析

就Donald提出的希尔排序算法而言,由于不额外开辟空间存储记录,空间复杂度是: O ( 1 ) O(1) O(1)

五、算法实现

Donald Shell

def shell_sort(array: list, reverse: bool=False) -> None:
    '''
    array: 支持数值型数据,如整型与浮点型混合;支持全为字符串类型的数据;不支持字符串型与数值型混合。
    reverse: 是否降序, 默认采用升序。
    '''
    length = len(array)
    gap = length // 2 # set gap
    while gap >= 1:
        for index in range(gap, length):
            next = index
            while next >= gap and (array[next - gap] < array[next] if reverse else array[next - gap] > array[next]): # insertion sort
                array[next], array[next - gap] = array[next - gap], array[next]
                next -= gap
        gap //= 2 # renew

Knuth增量序列

def shell_sort(array: list, reverse: bool=False) -> None:
    '''
    array: 支持数值型数据,如整型与浮点型混合;支持全为字符串类型的数据;不支持字符串型与数值型混合。
    reverse: 是否降序, 默认采用升序。
    '''
    length = len(array)
    gap = 1
    while gap < length / 3:
        gap = int(3 * gap + 1)
    while gap >= 1:
        for index in range(gap, length):
            next = index
            while next >= gap and (array[next - gap] < array[next] if reverse else array[next - gap] > array[next]):
                array[next], array[next - gap] = array[next - gap], array[next]
                next -= gap
        gap = int(gap / 3)

Hibbard增量序列

Hibbard增量序列的取法为: D k = 2 k − 1 D_k=2^k-1 Dk=2k1

def shell_sort(array: list, reverse: bool=False) -> None:
    '''
    array: 支持数值型数据,如整型与浮点型混合;支持全为字符串类型的数据;不支持字符串型与数值型混合。
    reverse: 是否降序, 默认采用升序。
    '''
    length, index, sequence = len(array), 1, []
    value = (1 << index) - 1
    while value <= length:
        sequence.append(value)
        index += 1
        value = (1 << index) - 1
    for gap in reversed(sequence):
        for index in range(gap, length):
            next = index
            while next >= gap and (array[next - gap] < array[next] if reverse else array[next - gap] > array[next]):
                array[next], array[next - gap] = array[next - gap], array[next]
                next -= gap  

Sedgewick增量序列

Sedgewick增量序列的取法为: D k = 9 ⋅ 4 i − 9 ⋅ 2 i + 1 D_k=9 \cdot 4^i-9 \cdot 2^i + 1 Dk=94i92i+1 4 i − 3 ⋅ 2 i + 1 4^i - 3 \cdot 2^i + 1 4i32i+1

def shell_sort(array: list, reverse: bool=False) -> None:
    '''
    array: 支持数值型数据,如整型与浮点型混合;支持全为字符串类型的数据;不支持字符串型与数值型混合。
    reverse: 是否降序, 默认采用升序。
    '''
    length, index, sequence = len(array), 0, []
    pre, nex = 9 * ((1 << 2 * index) - (1 << index)) + 1, (1 << 2 * index + 4) - 3 * (1 << index + 2) + 1
    while pre <= length or nex <= length:
        sequence.append(pre)
        sequence.append(nex)
        index += 1
        pre, nex = 9 * ((1 << 2 * index) - (1 << index)) + 1, (1 << 2 * index + 4) - 3 * (1 << index + 2) + 1
    for gap in reversed(sequence):
        for index in range(gap, length):
            next = index
            while next >= gap and (array[next - gap] < array[next] if reverse else array[next - gap] > array[next]):
                array[next], array[next - gap] = array[next - gap], array[next]
                next -= gap
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeeGLMath

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值