概率总结5——贝叶斯定律

八、贝叶斯定律
在这里插入图片描述
其中P(A|B)是在 B 发生的情况下 A 发生的可能性。
P(A)是 A 的先验概率,之所以称为“先验”是因为它不考虑任何 B 方面的因素。

P(A|B)是已知 B 发生后 A 的条件概率,也由于得自 B 的取值而被称作 A 的后验概率。

P(B|A)是已知 A 发生后 B 的条件概率,也由于得自 A 的取值而被称作 B 的后验概率。

P(B)是 B 的先验概率,也作标淮化常量(normalizing constant)。

按这些术语,贝叶斯定理可表述为:

后验概率 = (相似度 * 先验概率)/标淮化常量
也就是说,后验概率与先验概率和相似度的乘积成正比。

另外,比例P(B|A)/P(B)也有时被称作标淮相似度(standardised likelihood),Bayes定理可表述为:

后验概率 = 标淮相似度 * 先验概率
条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在 B 发生的条件下 A 发生的概率”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鹏小站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值