方式一、UUID
UUID是通用唯一识别码(Universally Unique Identifier)的缩写,开放软件基金会(OSF)规范定义了包括网卡MAC地址、时间戳、名字空间(Namespace)、随机或伪随机数、时序等元素。利用这些元素来生成UUID。
UUID是由128位二进制组成,一般转换成十六进制,然后用String表示。在java中有个UUID类,在他的注释中我们看见这里有4种不同的UUID的生成策略:
1. randomly
基于随机数生成UUID,由于Java中的随机数是伪随机数,其重复的概率是可以被计算出来的。这个一般我们用下面的代码获取基于随机数的UUID:
java.util.UUID.randomUUID()
2. time-based
基于时间的UUID,这个一般是通过当前时间,随机数,和本地Mac地址来计算出来,自带的JDK包并没有这个算法的我们在一些UUIDUtil中,比如我们的log4j.core.util
3. DCE security
DCE安全的UUID。
4. name-based
基于名字的UUID,通过计算名字和名字空间的MD5来计算UUID。
- 优点
通过本地生成,没有经过网络I/O,性能较快
无序,无法预测他的生成顺序。(当然这个也是他的缺点之一)
- 缺点
128位二进制一般转换成36位的16进制,太长了只能用String存储,空间占用较多。
不能生成递增有序的数字
- 适用
UUID的适用场景可以为不担心过多的空间占用,以及不需要生成有递增趋势的数字。在Log4j里面他在UuidPatternConverter中加入了UUID来标识每一条日志。
方式二、数据库主键自增
- 优点
简单方便,有序递增,方便排序和分页
- 缺点
1.分库分表会带来问题,需要进行改造。
2.并发性能不高,受限于数据库的性能。
3.简单递增容易被其他人猜测利用,比如你有一个用户服务用的递增,那么其他人可以根据分析注册的用户ID来得到当天你的服务有多少人注册,从而就能猜测出你这个服务当前的一个大概状况。
4.数据库宕机服务不可用。
- 适用
当数据量不多,并发性能不高的时候这个很适合,比如一些to B的业务,商家注册这些,商家注册和用户注册不是一个数量级的,所以可以数据库主键递增。如果对顺序递增强依赖,那么也可以使用数据库主键自增。
基于数据库集群模式
单点数据库方式不可取,那对上边的方式做一些高可用优化,换成主从模式集群。害怕一个主节点挂掉没法用,那就做双主模式集群,也就是两个Mysql实例都能单独的生产自增ID。
MySQL_1 配置:
set @@auto_increment_offset = 1; -- 起始值
set @@auto_increment_increment = 2; -- 步长
MySQL_2 配置:
set @@auto_increment_offset = 2; -- 起始值
set @@auto_increment_increment = 2; -- 步长
那如果集群后的性能还是扛不住高并发咋办?就要进行MySQL扩容增加节点,这是一个比较麻烦的事。
从上图可以看出,水平扩展的数据库集群,有利于解决数据库单点压力的问题,同时为了ID生成特性,将自增步长按照机器数量来设置。
增加第三台MySQL实例需要人工修改一、二两台MySQL实例的起始值和步长,把第三台机器的ID起始生成位置设定在比现有最大自增ID的位置远一些,但必须在一、二两台MySQL实例ID还没有增长到第三台MySQL实例的起始ID值的时候,否则自增ID就要出现重复了,必要时可能还需要停机修改。
- 优点:解决DB单点问题
- 缺点:
不利于后续扩容,而且实际上单个数据库自身压力还是大,依旧无法满足高并发场景
基于数据库的号段模式
号段模式是当下分布式ID生成器的主流实现方式之一,号段模式可以理解为从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,具体的业务服务将本号段,生成1~1000的自增ID并加载到内存。表结构如下:
CREATETABLE id_generator (
idint(10) NOTNULL,
max_id bigint(20) NOTNULLCOMMENT'当前最大id',
step int(20) NOTNULLCOMMENT'号段的布长',
biz_type int(20) NOTNULLCOMMENT'业务类型',
versionint(20) NOTNULLCOMMENT'版本号',
PRIMARY KEY (`id`)
)
- biz_type :代表不同业务类型
- max_id :当前最大的可用id
- step :代表号段的长度
- version :是一个乐观锁,每次都更新version,保证并发时数据的正确性
Redis
Redis中有两个命令Incr,IncrBy,因为Redis是单线程的所以能保证原子性。
- 优点
性能比数据库好,能满足有序递增。
- 缺点
1.由于redis是内存的KV数据库,即使有AOF和RDB,但是依然会存在数据丢失,有可能会造成ID重复。
2.依赖于redis,redis要是不稳定,会影响ID生成。
- 适用
由于其性能比数据库好,但是有可能会出现ID重复和不稳定,这一块如果可以接受那么就可以使用。也适用于到了某个时间,比如每天都刷新ID,那么这个ID就需要重置,通过(Incr Today),每天都会从0开始加。
数据库分段+服务缓存ID
step代表每个proxyServer缓存的步长。
之前我们的每个服务都访问的是数据库,现在不需要,每个服务直接和我们的ProxyServer做交互,减少了对数据库的依赖。我们的每个ProxyServer回去数据库中拿出步长的长度,比如server1拿到了1-1000,server2拿到来 1001-2000。如果用完会再次去数据库中拿。
- 优点
比主键递增性能高,能保证趋势递增。
如果DB宕机,proxServer由于有缓存依然可以坚持一段时间。
- 缺点
和主键递增一样,容易被人猜测。
DB宕机,虽然能支撑一段时间但是仍然会造成系统不可用。
- 适用
需要趋势递增,并且ID大小可控制的,可以使用这套方案。
当然这个方案也可以通过一些手段避免被人猜测,把ID变成是无序的,比如把我们生成的数据是一个递增的long型,把这个Long分成几个部分,比如可以分成几组三位数,几组四位数,然后在建立一个映射表,将我们的数据变成无序
雪花算法-Snowflake
适用场景:当我们需要无序不能被猜测的ID,并且需要一定高性能,且需要long型,那么就可以使用我们雪花算法。比如常见的订单ID,用雪花算法别人就无法猜测你每天的订单量是多少。
public class IdWorker{
private long workerId;
private long datacenterId;
private long sequence = 0;
/**
* 2018/9/29日,从此时开始计算,可以用到2089年
*/
private long twepoch = 1538211907857L;
private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
private long sequenceBits = 12L;
private long workerIdShift = sequenceBits;
private long datacenterIdShift = sequenceBits + workerIdBits;
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
// 得到0000000000000000000000000000000000000000000000000000111111111111
private long sequenceMask = -1L ^ (-1L << sequenceBits);
private long lastTimestamp = -1L;
public IdWorker(long workerId, long datacenterId){
this.workerId = workerId;
this.datacenterId = datacenterId;
}
public synchronized long nextId() {
long timestamp = timeGen();
//时间回拨,抛出异常
if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - timestamp));
}
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}
lastTimestamp = timestamp;
return ((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence;
}
/**
* 当前ms已经满了
* @param lastTimestamp
* @return
*/
private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
private long timeGen(){
return System.currentTimeMillis();
}
public static void main(String[] args) {
IdWorker worker = new IdWorker(1,1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
}
}