李飞飞、吴恩达、Bengio等人的15大顶级深度学习课程

from : http://blog.csdn.net/dQCFKyQDXYm3F8rB0/article/details/79136408hinton 深度学习课程:https://www.coursera.org/learn/neural-networks/home 翻译 | AI科技大本营 ...

2018-03-01 16:16:10

阅读数 665

评论数 0

查看LINUX进程内存占用情况

可以直接使用top命令后,查看%MEM的内容。可以选择按进程查看或者按用户查看,如想查看oracle用户的进程内存使用情况的话可以使用如下的命令:  (1)top   top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器...

2018-01-05 14:38:27

阅读数 6150

评论数 0

爬虫框架Scrapy实战之批量抓取招聘信息--附源码

了解更多Python爬虫内容请微信公众号关注:Python技术博文 所谓网络爬虫,就是一个在网上到处或定向抓取数据的程序,当然,这种说法不够专业,更专业的描述就是,抓取特定网站网页的HTML数据。不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保...

2017-09-13 19:36:21

阅读数 609

评论数 0

ananconda下运行nltk报错解决办法

报错内容: Traceback (most recent call last):   File "", line 1, in   File "E:\anaconda2\lib\site-packages\spyder\utils\site\sitecustom...

2017-09-01 16:14:19

阅读数 1894

评论数 0

anaconda使用总结

1、安装anaconda 之前什么都不需要安装,直接在官网下载anaconda,我下载的是Python2.7,64位的。 直接双击安装,可以自己选定安装位置(最好不要安装在C盘,自己选择一个路径比较好,我是放在e:\anaconda2目录下面的)。 安装完成后,可以看到: ...

2017-08-17 11:02:52

阅读数 788

评论数 0

聚类算法总结

聚类算法总结 一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最...

2017-07-11 18:07:15

阅读数 4616

评论数 0

广度/宽度优先搜索(BFS)

广度/宽度优先搜索(BFS) 【算法入门】 郭志伟@SYSU:raphealguo(at)qq.com 2012/04/27 1.前言 广度优先搜索(也称宽度优先搜索,缩写BFS,以下采用广度来描述)是连通图的一种遍历策略。因为它的思想是从一个顶点V0开始,辐射状地优...

2017-06-28 11:06:00

阅读数 309

评论数 0

Stanford大学第八周学习笔记

我已经 提到过 PCA 有时可以 用来提高机器学习算法的速度  0:07 在本节课的视频中 讲解如何在实际操作中 来实现 同时列举 一些例子 只是希望能够 提供一些应用 PCA 的建议  0:17 首先我先介绍如何通过 PCA 来提高学习算法的速度 这种监督学习算法的提速 实际...

2017-06-22 09:22:38

阅读数 300

评论数 0

The Representer Theorem, 表示定理.

Kernel Methods (6) The Representer Theorem The Representer Theorem, 表示定理. 给定: 非空样本空间: χχmm个样本:{(x1,y1),…,(xm,ym)},xiinχ,yi∈R{(x1,y1),…...

2017-06-10 10:16:33

阅读数 3040

评论数 0

《凸优化理论》-----共轭函数

这一节将介绍凸优化里一个很重要的概念——共轭变换,它给我们提供了另一个研究凸函数的视角。其背后想法是,对于凸函数ff,通过它的共轭函数(conjugate function),即一系列和ff相关的仿射函数来描述它。此外,当ff是正常闭凸函数时,这种变换还是对称的,也即ff的共轭函数的共轭函数就是...

2017-06-07 16:58:11

阅读数 2039

评论数 0

Python高阶文章整理--待编中

Object-Oriented Design with Python  http://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/li.pdfPython高级编程技巧  http://blog.jobbole....

2017-06-07 09:06:55

阅读数 767

评论数 0

机器学习笔记(PRML)

转载自:http://nbviewer.jupyter.org/github/lijin-THU/notes-machine-learning/blob/master/ReadMe.ipynb 机器学习笔记 简介 作者:李金  版本:0.0.1 邮件:lijinw...

2017-06-06 16:17:58

阅读数 1382

评论数 0

PageRank

PageRank,网页排名,又称网页级别、Google左侧排名或佩奇排名,是一种由[1] 根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(Larry Page)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来...

2017-05-16 22:40:06

阅读数 818

评论数 0

支持向量机:Duality

在之前关于 support vector 的推导中,我们提到了 dual ,这里再来补充一点相关的知识。这套理论不仅适用于 SVM 的优化问题,而是对于所有带约束的优化问题都适用的,是优化理论中的一个重要部分。简单来说,对于任意一个带约束的优化都可以写成这样的形式: mins.t.f...

2017-05-07 21:57:48

阅读数 386

评论数 0

python实现队列---附加实战演练

队列(queue),是先进先出(FIFO, First-In-First-Out)的线性表,在具体应用中通常用链表或者数组来实现,队列只允许在后端(称为rear)进行插入操作,在前端(称为front)进行删除操作,队列的操作方式和堆栈类似,唯一的区别在于队列只允许新数据在后端进行添加。 摘录维...

2017-05-05 10:59:59

阅读数 1579

评论数 0

python 数组的del ,remove,pop区别

以a=[1,2,3] 为例,似乎使用del, remove, pop一个元素2 之后 a都是为 [1,3], 如下: >>> a=[1,2,3] >>> a.remove(2) >>> a [1, 3] >>> a=...

2017-05-01 17:51:22

阅读数 18360

评论数 4

如何直观的解释back propagation算法(三)

首先说这个图解的优点:先形象说明了forward-propagation,然后说明了error backward-propagation,最后根据误差和梯度更新权重。没错这是backprop,又非常直观,但是从前的backprop了。 backprop的发展路线大概是,1974年有个Harvard...

2017-04-28 17:52:00

阅读数 584

评论数 0

如何直观的解释back propagation算法(二)

利用计算图做自动微分时,既有前向模式,也有反向模式。而神经网络中的反向传播就是自动微分的反向模式。事实上,我们还可以用“前向传播”来计算神经网络中的梯度值,但是由于效率原因这个方法并没有被采用。 我们首先考虑下面这个计算图 <img src="https:...

2017-04-28 11:30:15

阅读数 555

评论数 0

如何直观的解释back propagation算法(一)

作者:胡逸夫 链接:https://www.zhihu.com/question/27239198/answer/89853077 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 BackPropagation算法是多层神经网络的训练中举足轻重的算法。 简单的理...

2017-04-27 18:34:52

阅读数 735

评论数 0

CS231n课程笔记翻译:反向传播笔记

译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Backprop Note,课程教师Andrej Karpathy授权翻译。本篇教程由杜客翻译完成,堃堃和巩子嘉进行校对修改。译文含公式和代码,建议PC端阅读。 原文如下: 内容列表: 简介 简单表达式和理解梯...

2017-04-27 17:31:09

阅读数 770

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭