“LeetTalk Daily”,每日科技前沿,由LeetTools AI精心筛选,为您带来最新鲜、最具洞察力的科技新闻。
在当今人工智能技术飞速发展的时代,长上下文大语言模型(LLMs)如雨后春笋般涌现,成为了研究和应用的热点。随着这些模型的崛起,检索增强生成(RAG)系统的未来也引发了广泛的讨论。有人认为,长上下文LLMs的强大能力可能会导致RAG的“灭亡”,而另一些人则持相反观点,认为两个技术可以相辅相成,共同推动AI技术的发展。
本文将从长上下文LLMs与RAG的架构、功能和应用场景入手,分析它们之间的异同与联系,并对未来两种技术发展谈谈一些看法,希望能够提供对长上下文LLMs与RAG之间关系的全面理解,并探讨未来的发展方向。准备好了吗?让我们一起揭开这个技术谜团的面纱吧!
长上下文大模型与RAG的对比
从架构上看,LLMs采用基于变换器(Transformer)的架构,长上下文大模型能够处理更长的输入序列。数十万甚至百万个标记能够支持在一次处理过程中吸收大量信息,从而生成更为连贯和上下文相关的响应。而RAG系统则结合了检索机制和生成模型,通过检索系统从外部知识库中获取相关信息,并将这些信息与用户的输入结合,生成最终的响应。这种双重机制使得RAG能够在