LeetTalk Daily | 长上下文大模型会导致RAG灭亡?

317585a9a4861b4e996e33b6867e72b1.png

“LeetTalk Daily”,每日科技前沿,由LeetTools AI精心筛选,为您带来最新鲜、最具洞察力的科技新闻。

在当今人工智能技术飞速发展的时代,长上下文大语言模型(LLMs)如雨后春笋般涌现,成为了研究和应用的热点。随着这些模型的崛起,检索增强生成(RAG)系统的未来也引发了广泛的讨论。有人认为,长上下文LLMs的强大能力可能会导致RAG的“灭亡”,而另一些人则持相反观点,认为两个技术可以相辅相成,共同推动AI技术的发展。

本文将从长上下文LLMs与RAG的架构、功能和应用场景入手,分析它们之间的异同与联系,并对未来两种技术发展谈谈一些看法,希望能够提供对长上下文LLMs与RAG之间关系的全面理解,并探讨未来的发展方向。准备好了吗?让我们一起揭开这个技术谜团的面纱吧!

长上下文大模型与RAG的对比

从架构上看,LLMs采用基于变换器(Transformer)的架构,长上下文大模型能够处理更长的输入序列。数十万甚至百万个标记能够支持在一次处理过程中吸收大量信息,从而生成更为连贯和上下文相关的响应。而RAG系统则结合了检索机制和生成模型,通过检索系统从外部知识库中获取相关信息,并将这些信息与用户的输入结合,生成最终的响应。这种双重机制使得RAG能够在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值