最近一遇到数学题就很纠结~~老是WA~校赛遇到的水题WA~~今天这题又是WA
1.此题为求表达式1+2+3^3+4+5+6^3+……的值,给定的n可能不是3的倍数。
2.此题若采用公式化简的方法:
设n是3的倍数:1+2+3^3+4+5+6^3+……+n^3
=(1+2+3+..+n)-(3+6+9+..+n)+27*(1^3+2^3+3^3+..+[n/3]^3)
=n*(n+1)/2-n*(n+3)/6+27*[n/3(n/3+1)/2]^2
若化简到最后为: n*n*(n^2+6*n+2) /12;
3. 代码设计过程:
若采用直接利用最简公式n*n*(n^2+6*n+2) /12,是错误的。
很容易理解公式从左到右乘法得n的最高次方为4,而n最大为6位,乘起来必然超过了__int64d的表示范围。
比如n=90000时,得到结果-681050182461517205,说明有溢出。
解决方法:采用倒数第二步公式n*(n+1)/2-n*(n+3)/6+27*[n/3(n/3+1)/2]^2,求sum。
sum=n/3*(n/3+1)/2;
sum*=sum;
sum=sum*27+n*(n+1)/2-n*(n+3)/6;
这样就可以了!!
总结:当遇到求解公式,而公式中有n^4等等,n又比较大时,不要直接求,采用分布就可以了。