题意分析:
本题要求1~n用时最短的秒数。
两点之间有路径即1km,在有了空间加速器之后,每秒能走2的k次方km,求最短时间从1到达n。
解题思路
空间加速器用起来肯定更好。
- 用了空间加速器,原有的路径就会改变,可以跳过某些点到达后面的某个点,因此需要对图中的边进行再次构建。
- 新的图就是就是小A在每个点上借助机器能够直接前往的地方,构建起一条新的两点直接可以通过空间加速器可以直接达到的边。
- 求出从1~n的最短路即可。
特殊处理
- 倍增处理
每秒钟可以跑 2的k次方km,k 是任意自然数,且这个机器是用 long int 存的,所以总跑路长度不能超过 max long int 千米。
本题重难点在于如何计算出小A在每个点利用空间加速器能够前往的地方。
朴素算法就是在每一个点上逐一枚举,判定范围;
当然,看到2的k次方,你肯定会想到倍增,可以用倍增小小的优化一下。
即如果i到t,t到 j 都存在长度为2 的(k−1)次方的路径,那么i到j就存在长度为2 的k次方的路径。
for(int k=1;k<=64;k++)
{
for(int i=1;i<=n;i++)
{
for(int t=1;t<=n;t++)
{
for(int j=1;j<=n;j++)
{
//如果i到t,t到 j 都存在长度为2 的(k−1)次方的路径,那么i到j就存在长度为2 的k次方的路径
if(vis[i][t][k-1] && vis[t][j][k-1])
{
//i到j有2的k次方的路径
vis[i][j][k]=1;
//两点之间的记录为1
dis[i][j]=1;
}
}
}
}
}
- floyed求最短路
要求小A在每个点上,利用加速器能够前往的点,所以要求任意两点之间的最短路,floyed求解
代码实现
#include<bits/stdc++.h>
using namespace std;
int n,m;
bool vis[59][59][69];
int dis[59][59];
void floyed()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(dis[i][j]>dis[i][k]+dis[k][j])
dis[i][j]=dis[i][k]+dis[k][j];
}
}
}
}
int main()
{
cin>>n>>m;
memset(dis,0x3f,sizeof dis);
//建图 u到v有边,u、v之间是1km,即利用机器1s跑2的0次方到
for(int i=1;i<=m;i++)
{
int u,v;
cin>>u>>v;
dis[u][v]=1;
//u到v可以通过2的0次方达到
vis[u][v][0]=1;
}
//补充图,如果i到t、t到j都有2的(k-1)次方达到的路径
//则 i到j有一条2的k次方能够达到的路径
for(int k=1;k<=64;k++)
{
for(int i=1;i<=n;i++)
{
for(int t=1;t<=n;t++)
{
for(int j=1;j<=n;j++)
{
if(vis[i][t][k-1] && vis[t][j][k-1])
{
vis[i][j][k]=1;
dis[i][j]=1;
}
}
}
}
}
//计算出任意两点的距离
floyed();
cout<<dis[1][n]<<endl;
return 0;
}