图论-最短路学习 P1613 跑路

题意分析:

本题要求1~n用时最短的秒数。

两点之间有路径即1km,在有了空间加速器之后,每秒能走2的k次方km,求最短时间从1到达n。

解题思路

空间加速器用起来肯定更好。

  • 用了空间加速器,原有的路径就会改变,可以跳过某些点到达后面的某个点,因此需要对图中的边进行再次构建。
  • 新的图就是就是小A在每个点上借助机器能够直接前往的地方,构建起一条新的两点直接可以通过空间加速器可以直接达到的边。
  • 求出从1~n的最短路即可。

特殊处理

  • 倍增处理

每秒钟可以跑 2的k次方km,k 是任意自然数,且这个机器是用 long int 存的,所以总跑路长度不能超过 max long int 千米。

本题重难点在于如何计算出小A在每个点利用空间加速器能够前往的地方。
朴素算法就是在每一个点上逐一枚举,判定范围;
当然,看到2的k次方,你肯定会想到倍增,可以用倍增小小的优化一下。

即如果i到t,t到 j 都存在长度为2 的(k−1)次方的路径,那么i到j就存在长度为2 的k次方的路径。

	for(int k=1;k<=64;k++)
	{
		for(int i=1;i<=n;i++)
		{
			for(int t=1;t<=n;t++)
			{
				for(int j=1;j<=n;j++)
				{
				//如果i到t,t到 j 都存在长度为2 的(k−1)次方的路径,那么i到j就存在长度为2 的k次方的路径
					if(vis[i][t][k-1] && vis[t][j][k-1])
					{
					//i到j有2的k次方的路径
						vis[i][j][k]=1;
						//两点之间的记录为1
						dis[i][j]=1;
					}
				}
			}
		}
	 } 
  • floyed求最短路
    要求小A在每个点上,利用加速器能够前往的点,所以要求任意两点之间的最短路,floyed求解

代码实现

#include<bits/stdc++.h>
using namespace std;
int n,m;
bool vis[59][59][69];
int dis[59][59];
void floyed()
{
	for(int k=1;k<=n;k++)
	{
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				if(dis[i][j]>dis[i][k]+dis[k][j])
				dis[i][j]=dis[i][k]+dis[k][j];
			}
		}
	}
 } 
int main()
{
	cin>>n>>m;
	memset(dis,0x3f,sizeof dis);
	//建图  u到v有边,u、v之间是1km,即利用机器1s跑2的0次方到 
	for(int i=1;i<=m;i++)
	{
		int u,v;
		cin>>u>>v;
		dis[u][v]=1;
		//u到v可以通过2的0次方达到 
		vis[u][v][0]=1;
	}
	//补充图,如果i到t、t到j都有2的(k-1)次方达到的路径
	//则 i到j有一条2的k次方能够达到的路径 
	for(int k=1;k<=64;k++)
	{
		for(int i=1;i<=n;i++)
		{
			for(int t=1;t<=n;t++)
			{
				for(int j=1;j<=n;j++)
				{
					if(vis[i][t][k-1] && vis[t][j][k-1])
					{
						vis[i][j][k]=1;
						dis[i][j]=1;
					}
				}
			}
		}
	 } 
	 //计算出任意两点的距离 
	 floyed(); 
	 cout<<dis[1][n]<<endl; 
	return 0;
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值