算法前置知识篇(附Java冒泡排序)
一.算法的时间复杂度分析方法有两种:
1.事后分析估算方法
2.事前分析估算方法
二.算法时间复杂度的记法
1.大写O()来体现时间复杂度的记法,称之为大O记法。
-
a.用常数1取代运行时间中的所有加法常数。
-
b.在修改后的运行次数中,只保留高阶项。
-
c.如果最高阶项存在,且常数因子不为1,则去除与这个项相乘的常数
三.空间复杂度相关知识点:
1.计算机访问内存的方式都是一次一个字节
2.一个引用(机器地址)需要8个字节
3.每个对象的自身开销是16个字节,用来保存对象的头信息。
4.一般内存的使用,如果不够8个字节,都会被自动填充为8字节。
byte:占用字节:1
short,char:占用字节:2
int,float:占用字节:4
double,long:占用字节:8
四.简单排序:
1冒泡排序:
a.比较相邻的元素,如果前一个元素比后一个元素大,就交换这两个元素的位置。
b:对每一对相邻的元素做同样的工作,从开始第一对元素到结尾的最后一对元素,最终最后位置的元素就是最大值。
public class Bubble {
public static void sort( Comparable[] a){
for(int i=a.length-1;i>0;i--){
for(int j=0;j<i;j++){
if(greater(a[j],a[j+1])){
exch(a,j,j+1);
}
}
}}
public static boolean greater(Comparable v,Comparable w){
return v.compareTo(w)>0;
}
public static void exch Comparable[] a,int i,int j){
Comparable temp;
temp=a[i];
a[i]=a[j];
a[j]=temp;
}}
测试代码:
public class bubbletest {
public static void main(String [] args){
Integer[] arr={4,5,6,32,1,7};
Bubble.sort(arr);System.out.println(Arrays.toString(arr));
}}
冒泡排序的时间复杂度分析:
在逆序的情况下,元素比较的次数为:(N-1)+(N-2)+(N-3)+…+2+1=N^2/2-N/2
元素交换的次数为:(N-1)+(N-2)+(N-3)+…+2+1=N^2/2-N/2
总执行次数为: N^2-N
根据大O推导法则,冒泡排序的时间复杂度为O(N^2)。
综上所述,六六~认为冒泡排序适合数据量小的排序,不适合数据量大的排序。