合并石子问题

我们常见的石子合并问题一般就三种

第一种

n堆石子,每次合并的花费为两堆石子数目之和,求怎样合并可以使得合并为一整堆石子的总花费最少

实际上这就是HUfffman编码的变形,运用贪心策略,每次找出最小的两堆合并即可。

第二种

描述与第一种很相似,只不过每次合并只能合并相邻的两堆石子

那么贪心策略就不一定有用,局部最优的结果不一定是全局最优

那么我们就要考虑了,全局最优的子结构也应当是最优的。那么,我们就要考虑动态规划了,

状态转移方程:

dp[i][j] = min(dp[i][j],d[i][k]+dp[k+1][j]+sum[j]-sim[i])

解释一下,dp[i][j]表示合并第i堆到第j堆石子的最小花费,k的取值范围为i到j之间,表示分割点,例如1-3就可以分为1-2与3-3,sum【i】表示前i堆石子的总重量

初始化dp[i][i]为0,其他为无穷大

代码如下

#include<bits/stdc++.h>
using namespace std;
const int imax =0x7F7F7F7F;//极大值 
int n;
int dp[2000][2000];//答案数组 
int sum[2000];//花费数组 
int data[2000];//数据数组 
void init()//初始化
{
	memset(sum,0,sizeof(sum));
	memset(dp,imax,sizeof(dp));
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>data[i];
		sum[i]+=sum[i-1];
		sum[i]+=data[i];
		dp[i][i] = 0;
	}
} 

int solve()
{
	init();
	for(int v=1;v<n;v++)//v控制离中心线距离 
	{
		for(int i=1;i<=n-v;i++)//i控制行 
		{
			int j = i+v;//j控制列 
			int s = sum[j]-sum[i-1];//合并花费 
			for(int k=i;k<j;k++)
			dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+s); 
		}
	}
	return dp[1][n];
}
int main()
{
	cout<<solve();
	return 0;
}

上述代码的时间复杂度为O^3,那么我们有没有优化的方法呢?

平行四边形优化,我们用一个二维数组记录合并该堆石子的最佳决策点,也就是上述的K

有dp[i][j]的K值一定大于等于dp[i][j-1]的K,一定小于等于dp[i+1][j]的K

至于证明,感兴趣的同学可以去网上找一下大佬的解答,这里我就不误导大家了

下面给出优化后的代码

#include<bits/stdc++.h>
using namespace std;
const int imax =0x7F7F7F7F;//极大值 
int n;
int dp[2000][2000];//答案数组 
int sum[2000];//花费数组 
int data[2000];//数据数组 
int p[2000][2000];//优化数组 
void init()//初始化
{
	memset(sum,0,sizeof(sum));
	memset(dp,imax,sizeof(dp));
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		cin>>data[i];
		sum[i]+=sum[i-1];
		sum[i]+=data[i];
		dp[i][i] = 0;
		p[i][i] = i; 
	}
} 

int solve()
{
	init();
	for(int v=1;v<n;v++)//v控制离中心线距离 
	{
		for(int i=1;i<=n-v;i++)//i控制行 
		{
			int j = i+v;//j控制列 
			for(int k=p[i][j-1];k<=p[i+1][j];k++){
			int s = dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1];//合并花费 
			if(dp[i][j]>s)
			{
				dp[i][j] = s;
				p[i][j] = k;
			}
			}
		}
	}
	return dp[1][n];
}
int main()
{
	cout<<solve();
//	for(int i=1;i<=n;i++)
//	{
//		for(int j=1;j<=n;j++)
//		cout<<dp[i][j]<<" ";
//		cout<<endl;
//	}
	return 0;
}

第三种:

环形

n堆石子围成环状,求解

那么我们的dp数组的含义就要进行改变了,dp[i][j]的意义以第i堆石子为起点,合并j堆石子的最小(大)花费

sum的含义为第i堆为起点,后j堆的总和

最终遍历dp[i][n](1<=i<=n)

找到最小(大)的值

给一个oj题目让大家练手

 

贴出

给出ac代码

#include<bits/stdc++.h>
#define maxn 1<<27
#define N  101
using namespace std;
int n,ansmin = 1<<27,ansmax = -1;
int dp_max[N][N],dp_min[N][N];
int date[N];
void init()
{
	cin>>n;
	date[0] = 0;
	for(int i=1;i<=n;i++)
	{
		cin>>date[i];
		dp_min[i][1] = 0;//还没合并,没有花费 
		dp_max[i][1] = 0;
	}
	
}
int sum(int i,int v)
{
	int ans = 0;
	for(;v>0;v--,i++)
	{
		if(i>n)
		i%=n;
		ans+=date[i];
	}
	return ans;
}
void AC()
{
	init();
	for(int v=2;v<=n;v++)//合并的个数 
	{
		for(int i=1;i<=n;i++)//起始位置 
		{
			dp_min[i][v] = maxn;
			dp_max[i][v] = -1;
			for(int k =1;k<v;k++)
			{
				dp_min[i][v] = min(dp_min[i][v],dp_min[i][k]+dp_min[(i+k-1)%n+1][v-k]+sum(i,v));
				dp_max[i][v] = max(dp_max[i][v],dp_max[i][k]+dp_max[(i+k-1)%n+1][v-k]+sum(i,v));
			 } 
		 } 
	}
	for(int i=1;i<=n;i++)
	{
		if(dp_min[i][n]<ansmin)
		ansmin = dp_min[i][n];
		if(dp_max[i][n]>ansmax)
		ansmax = dp_max[i][n];
	}
}
int main()
{
	AC();
	cout<<ansmin<<endl<<ansmax;
	return 0;
}
  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值