【堆、位运算、数学】算法例题

目录

 

十九、堆

121. 数组中的第K个最大元素 ②

122. IPO ③

123. 查找和最小的K对数字 ② ×

124. 数据流的中位数 ③

二十、位运算

125. 二进制求和 ①

126. 颠倒二进制位 ①

127. 位1的个数 ①

128. 只出现一次的数字 ①

129. 只出现一次的数字 II ②

130. 数字范围按位与 ②

二十一、数学

131. 回文数 ①

132. 加一 ①

133. 阶乘后的零 ② √-

134. x的平方根 ①

135. Pow(x,n) ② ×


十九、堆

121. 数组中的第K个最大元素 ②

 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

你必须设计并实现时间复杂度为 O(n) 的算法解决此问题。

示例 1:

输入: [3,2,1,5,6,4],
 k = 2
输出: 5

示例 2:

输入: [3,2,3,1,2,4,5,5,6], 
k = 4
输出: 4

提示:

  • 1 <= k <= nums.length <= 105
  • -104 <= nums[i] <= 104

方法1:  简单方法用时少,第二个方法有的案例超时

    public static int findKthLargest(int[] nums, int k) {
//        方法1:
//        Arrays.sort(nums);
//        System.out.println(nums[nums.length - k]);
//        方法2:超时
        ArrayList<Integer> list = new ArrayList<>();
        Stack<Integer> stack = new Stack<>();
        for (int num : nums) {
            if (stack.size() == 0 || num > stack.peek()){
                stack.push(num);
            }else {
                while (stack.size() > 0 && num < stack.peek()){
                    list.add(stack.pop());
                }
                stack.push(num);
                int index = list.size() - 1;
                while (index >= 0){
                    stack.push(list.get(index--));
                    if (index == -1){
                        list.clear();
                    }
                }
            }
        }
        int index = 0;
        while (true){
            if (index == k - 1){
                break;
            }
            index++;
            stack.pop();
        }
        return stack.peek();
    }

方法2:

    public int findKthLargest(int[] nums, int k) {
        PriorityQueue<Integer> queue = new PriorityQueue<>((a, b) -> {
            return b - a;
        });
        for (int i : nums) {
            queue.add(i);
        }
        int result = 0;
        for (int i = 0; i < k; i++) {
            result = queue.poll();
        }
        return result;
    }

122. IPO ③

123. 查找和最小的K对数字 ② ×

给定两个以 非递减顺序排列 的整数数组 nums1 和 nums2 , 以及一个整数 k 

定义一对值 (u,v),其中第一个元素来自 nums1,第二个元素来自 nums2 

请找到和最小的 k 个数对 (u1,v1) (u2,v2)  ...  (uk,vk) 。

示例 1:

输入: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
输出: [1,2],[1,4],[1,6]
解释: 返回序列中的前 3 对数:
     [1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]

示例 2:

输入: nums1 = [1,1,2], nums2 = [1,2,3], k = 2
输出: [1,1],[1,1]
解释: 返回序列中的前 2 对数:
     [1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]

提示:

  • 1 <= nums1.length, nums2.length <= 105
  • -109 <= nums1[i], nums2[i] <= 109
  • nums1 和 nums2 均为 升序排列
  • 1 <= k <= 104
  • k <= nums1.length * nums2.length

解题思路:. - 力扣(LeetCode)

方法2:(14ms)  多路归并

class Solution {
    int[] nums1, nums2;
    int n, m;
    public List<List<Integer>> kSmallestPairs(int[] n1, int[] n2, int k) {
        nums1 = n1; nums2 = n2;
        n = nums1.length; m = nums2.length;
        List<List<Integer>> ans = new ArrayList<>();
        int l = nums1[0] + nums2[0], r = nums1[n - 1] + nums2[m - 1];
        while (l < r) {
            int mid = (int)(0L + l + r >> 1);
            if (check(mid, k)) r = mid;
            else l = mid + 1;
        }
        int x = r;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (nums1[i] + nums2[j] < x) {
                    List<Integer> temp = new ArrayList<>();
                    temp.add(nums1[i]); temp.add(nums2[j]);
                    ans.add(temp);
                } else break;
            }
        }
        for (int i = 0; i < n && ans.size() < k; i++) {
            int a = nums1[i], b = x - a;
            int c = -1, d = -1;
            l = 0; r = m - 1;
            while (l < r) {
                int mid = (int)(0L + l + r >> 1);
                if (nums2[mid] >= b) r = mid;
                else l = mid + 1;
            }
            if (nums2[r] != b) continue;
            c = r;
            l = 0; r = m - 1;
            while (l < r) {
                int mid = (int)(0L + l + r + 1) >> 1;
                if (nums2[mid] <= b) l = mid;
                else r = mid - 1;
            }
            d = r;
            for (int p = c; p <= d && ans.size() < k; p++) {
                List<Integer> temp = new ArrayList<>();
                temp.add(a); temp.add(b);
                ans.add(temp);
            }
        }
        return ans;
    }
    boolean check(int x, int k) {
        int ans = 0;
        for (int i = 0; i < n && ans < k; i++) {
            for (int j = 0; j < m && ans < k; j++) {
                if (nums1[i] + nums2[j] <= x) ans++;
                else break;
            }
        }
        return ans >= k;
    }
}

作者:宫水三叶
链接:https://leetcode.cn/problems/find-k-pairs-with-smallest-sums/solutions/1209848/gong-shui-san-xie-duo-lu-gui-bing-yun-yo-pgw5/

方法3:(15ms)  二分法

class Solution {
    int[] nums1, nums2;
    int n, m;
    public List<List<Integer>> kSmallestPairs(int[] n1, int[] n2, int k) {
        nums1 = n1; nums2 = n2;
        n = nums1.length; m = nums2.length;
        List<List<Integer>> ans = new ArrayList<>();
        int l = nums1[0] + nums2[0], r = nums1[n - 1] + nums2[m - 1];
        while (l < r) {
            int mid = (int)(0L + l + r >> 1);
            if (check(mid, k)) r = mid;
            else l = mid + 1;
        }
        int x = r;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (nums1[i] + nums2[j] < x) {
                    List<Integer> temp = new ArrayList<>();
                    temp.add(nums1[i]); temp.add(nums2[j]);
                    ans.add(temp);
                } else break;
            }
        }
        for (int i = 0; i < n && ans.size() < k; i++) {
            int a = nums1[i], b = x - a;
            int c = -1, d = -1;
            l = 0; r = m - 1;
            while (l < r) {
                int mid = (int)(0L + l + r >> 1);
                if (nums2[mid] >= b) r = mid;
                else l = mid + 1;
            }
            if (nums2[r] != b) continue;
            c = r;
            l = 0; r = m - 1;
            while (l < r) {
                int mid = (int)(0L + l + r + 1) >> 1;
                if (nums2[mid] <= b) l = mid;
                else r = mid - 1;
            }
            d = r;
            for (int p = c; p <= d && ans.size() < k; p++) {
                List<Integer> temp = new ArrayList<>();
                temp.add(a); temp.add(b);
                ans.add(temp);
            }
        }
        return ans;
    }
    boolean check(int x, int k) {
        int ans = 0;
        for (int i = 0; i < n && ans < k; i++) {
            for (int j = 0; j < m && ans < k; j++) {
                if (nums1[i] + nums2[j] <= x) ans++;
                else break;
            }
        }
        return ans >= k;
    }
}

作者:宫水三叶
链接:https://leetcode.cn/problems/find-k-pairs-with-smallest-sums/solutions/1209848/gong-shui-san-xie-duo-lu-gui-bing-yun-yo-pgw5/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

124. 数据流的中位数 ③

二十、位运算

125. 二进制求和 ① ×

 给你两个二进制字符串 a 和 b ,以二进制字符串的形式返回它们的和。

示例 1:

输入:a = "11", b = "1"
输出:"100"

示例 2:

输入:a = "1010", b = "1011"
输出:"10101"

提示:

  • 1 <= a.length, b.length <= 104
  • a 和 b 仅由字符 '0' 或 '1' 组成
  • 字符串如果不是 "0" ,就不含前导零

力扣题解:. - 力扣(LeetCode)

方法2:(0ms)

    public String addBinary(String a, String b) {//测试提交时间
        if (a.length() < b.length()) {
            return addBinary(b, a);
        }
        char[] sum = new char[a.length() + 1];
        int indexA = a.length() - 1, diffLen = a.length() - b.length();
        char carry = '0';
        while (indexA > -1) {
            char bitB = indexA - diffLen > -1 ? b.charAt(indexA - diffLen) : '0';
            if (a.charAt(indexA) == bitB) {
                sum[indexA-- + 1] = carry;
                carry = bitB;
            } else {
                sum[indexA-- + 1] = carry == '0' ? '1' : '0';
            }
        }
        sum[0] = carry;
        return carry == '1' ? new String(sum, 0, a.length() + 1) : new String(sum, 1, a.length());
    }

方法3:(1ms)

    public String addBinary(String a, String b) {
        StringBuilder ans = new StringBuilder();
        int ca = 0;
        for(int i = a.length() - 1, j = b.length() - 1;i >= 0 || j >= 0; i--, j--) {
            int sum = ca;
            sum += i >= 0 ? a.charAt(i) - '0' : 0;
            sum += j >= 0 ? b.charAt(j) - '0' : 0;
            ans.append(sum % 2);
            ca = sum / 2;
        }
        ans.append(ca == 1 ? ca : "");
        return ans.reverse().toString();
    }

方法4:(2ms)

    public String addBinary(String a, String b) {
        Deque<Character> stack1 = new ArrayDeque<>();
        Deque<Character> stack2 = new ArrayDeque<>();
        for (char c : a.toCharArray()) {
            stack1.push(c);
        }
        for (char c1 : b.toCharArray()) {
            stack2.push(c1);
        }
        StringBuffer sb = new StringBuffer();
        int carry = 0, sum = 0;
        while (stack1.size() > 0 || stack2.size() > 0) {
            int a1 = stack1.size() == 0 ? 0 : stack1.pop() - '0';
            int a2 = stack2.size() == 0 ? 0 : stack2.pop() - '0';
            sum = a1 + a2 + carry;
            int mod = sum % 2;
            carry = sum / 2;
            sb.append(mod);
        }

        if (carry == 1) sb.append(1);
        return sb.reverse().toString();
    }

126. 颠倒二进制位 ① ×

 颠倒给定的 32 位无符号整数的二进制位。

提示:

  • 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
  • 在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在 示例 2 中,输入表示有符号整数 -3,输出表示有符号整数 -1073741825

示例 1:

输入:n = 00000010100101000001111010011100
输出:964176192 (00111001011110000010100101000000)
解释:输入的二进制串 00000010100101000001111010011100 表示无符号整数 43261596 因此返回 964176192,其二进制表示形式为 00111001011110000010100101000000

示例 2:

输入:n = 11111111111111111111111111111101
输出:3221225471 (10111111111111111111111111111111)
解释:输入的二进制串 11111111111111111111111111111101 表示无符号整数 4294967293,
     因此返回 3221225471 其二进制表示形式为 10111111111111111111111111111111 。

提示:

  • 输入是一个长度为 32 的二进制字符串

进阶: 如果多次调用这个函数,你将如何优化你的算法?

力扣题解:. - 力扣(LeetCode)

方法2:

int ans = 0;
        for (int i = 0; i < 32; i++) {
            int t = (n >> i) & 1;
            if (t == 1) {
                ans |= (1 << (31 - i));
            }
        }
        return ans;
    }

作者:宫水三叶
链接:https://leetcode.cn/problems/reverse-bits/solutions/686465/yi-ti-san-jie-dui-cheng-wei-zhu-wei-fen-ub1hi/

方法3:

    public int reverseBits(int n) {
        int ans = 0;
        int cnt = 32;
        while (cnt-- > 0) {
            ans <<= 1;
            ans += (n & 1);
            n >>= 1;
        }
        return ans;
    }

作者:宫水三叶
链接:https://leetcode.cn/problems/reverse-bits/solutions/686465/yi-ti-san-jie-dui-cheng-wei-zhu-wei-fen-ub1hi/

方法4:

   public int reverseBits(int n) {
        n = ((n & 0xAAAAAAAA) >>> 1)  | ((n & 0x55555555) << 1);
        n = ((n & 0xCCCCCCCC) >>> 2)  | ((n & 0x33333333) << 2);
        n = ((n & 0xF0F0F0F0) >>> 4)  | ((n & 0x0F0F0F0F) << 4);
        n = ((n & 0xFF00FF00) >>> 8)  | ((n & 0x00FF00FF) << 8);
        n = ((n & 0xFFFF0000) >>> 16) | ((n & 0x0000FFFF) << 16);
        return n;
    }

作者:宫水三叶
链接:https://leetcode.cn/problems/reverse-bits/solutions/686465/yi-ti-san-jie-dui-cheng-wei-zhu-wei-fen-ub1hi/

127. 位1的个数 ① ×

 编写一个函数,输入是一个无符号整数(以二进制串的形式),返回其二进制表达式中数字位数为 '1' 的个数(也被称为汉明重量)。

提示:

  • 请注意,在某些语言(如 Java)中,没有无符号整数类型。在这种情况下,输入和输出都将被指定为有符号整数类型,并且不应影响您的实现,因为无论整数是有符号的还是无符号的,其内部的二进制表示形式都是相同的。
  • 在 Java 中,编译器使用二进制补码记法来表示有符号整数。因此,在 示例 3 中,输入表示有符号整数 -3

示例 1:

输入:n = 00000000000000000000000000001011
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。

示例 2:

输入:n = 00000000000000000000000010000000
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 '1'。

示例 3:

输入:n = 11111111111111111111111111111101
输出:31
解释:输入的二进制串 11111111111111111111111111111101 中,共有 31 位为 '1'。

提示:

  • 输入必须是长度为 32 的 二进制串 。

进阶

  • 如果多次调用这个函数,你将如何优化你的算法?

方法2:

    public static int hammingWeight(int n) {
        int count = 0;
        for (int i = 0; i < 32; i++) {
            count += n & 1;
             n >>= 1;
        }
        return count;
    }

128. 只出现一次的数字 ① ×

 给你一个 非空 整数数组 nums ,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。

你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。

示例 1 :

输入:nums = [2,2,1]
输出:1

示例 2 :

输入:nums = [4,1,2,1,2]
输出:4

示例 3 :

输入:nums = [1]
输出:1

提示:

  • 1 <= nums.length <= 3 * 104
  • -3 * 104 <= nums[i] <= 3 * 104
  • 除了某个元素只出现一次以外,其余每个元素均出现两次。

力扣题解:. - 力扣(LeetCode)

方法1:(12ms)

        int res = 0;
        if (nums.length == 1){
            res = nums[0];
        }
        HashMap<Integer, Integer> map = new HashMap<>();
        for (int num : nums) {
            map.put(num, map.getOrDefault(num, 0) + 1);
        }
        Set<Map.Entry<Integer, Integer>> entries = map.entrySet();
        for (Map.Entry<Integer, Integer> entry : entries) {
            if (entry.getValue() == 1){
                res = entry.getKey();
            }
        }
        return res;

方法2:(0ms)

异或的方法:(除了某个元素只出现一次以外,其余每个元素均出现两次)

异或:两个相同的数字做异或会抵消。

    public int singleNumber(int[] nums) {
        int ans = nums[0];
        int n = nums.length;
        for (int i = 1; i < n;i++){
            ans ^= nums[i];
        }
        return ans;
    }

129. 只出现一次的数字 II ② ×

给你一个整数数组 nums ,除某个元素仅出现 一次 外,其余每个元素都恰出现 三次 。请你找出并返回那个只出现了一次的元素。

你必须设计并实现线性时间复杂度的算法且使用常数级空间来解决此问题。

示例 1:

输入:nums = [2,2,3,2]
输出:3

示例 2:

输入:nums = [0,1,0,1,0,1,99]
输出:99

提示:

  • 1 <= nums.length <= 3 * 104
  • -231 <= nums[i] <= 231 - 1
  • nums 中,除某个元素仅出现 一次 外,其余每个元素都恰出现 三次

解题思路:

. - 力扣(LeetCode)

哈希表:(5ms)

    public int singleNumber(int[] nums) {
        Map<Integer, Integer> map = new HashMap<>();
        for (int x : nums) {
            map.put(x, map.getOrDefault(x, 0) + 1);
        }
        for (int x : map.keySet()) {
            if (map.get(x) == 1) return x;
        }
        return -1;
    

作者:宫水三叶
链接:https://leetcode.cn/problems/single-number-ii/solutions/752249/gong-shui-san-xie-yi-ti-san-jie-ha-xi-bi-fku8/

位数统计:3ms:

class Solution {
    public int singleNumber(int[] nums) {
        int[] cnt = new int[32];
        for (int x : nums) {
            for (int i = 0; i < 32; i++) {
                if (((x >> i) & 1) == 1) {
                    cnt[i]++;
                }
            }
        }
        int ans = 0;
        for (int i = 0; i < 32; i++) {
            if ((cnt[i] % 3 & 1) == 1) {
                ans += (1 << i);
            }
        }
        return ans;
    }
}

作者:宫水三叶
链接:https://leetcode.cn/problems/single-number-ii/solutions/752249/gong-shui-san-xie-yi-ti-san-jie-ha-xi-bi-fku8/

DFA:0ms:

class Solution {
    public int singleNumber(int[] nums) {
        int one = 0, two = 0;
        for(int x : nums){
            one = one ^ x & ~two;
            two = two ^ x & ~one;
        }
        return one;
    }
}

作者:宫水三叶
链接:https://leetcode.cn/problems/single-number-ii/solutions/752249/gong-shui-san-xie-yi-ti-san-jie-ha-xi-bi-fku8/

130. 数字范围按位与 ② ×

给你两个整数 left 和 right ,表示区间 [left, right] ,返回此区间内所有数字 按位与 的结果(包含 left 、right 端点)。

示例 1:

输入:left = 5, right = 7
输出:4

示例 2:

输入:left = 0, right = 0
输出:0

示例 3:

输入:left = 1, right = 2147483647
输出:0

提示:

  • 0 <= left <= right <= 231 - 1

解题思路:. - 力扣(LeetCode)

3ms:

public int rangeBitwiseAnd(int m, int n) {
    int zeros = 0;
    while (n > m) {
        n = n & (n - 1);
    }
    return n;
}

作者:windliang
链接:https://leetcode.cn/problems/bitwise-and-of-numbers-range/solutions/56903/xiang-xi-tong-su-de-si-lu-fen-xi-duo-jie-fa-by--41/

3ms:

public int rangeBitwiseAnd(int m, int n) {
    if (m == n) {
        return m;
    }
    int i = m ^ n;
    i |= (i >>> 1);
    i |= (i >>> 2);
    i |= (i >>> 4);
    i |= (i >>> 8);
    i |= (i >>> 16);
    return m & ~i;
}

作者:windliang
链接:https://leetcode.cn/problems/bitwise-and-of-numbers-range/solutions/56903/xiang-xi-tong-su-de-si-lu-fen-xi-duo-jie-fa-by--41/

解题思路:. - 力扣(LeetCode)

3ms:

class Solution {
    public int rangeBitwiseAnd(int m, int n) {
        if (m == 0) return 0;
        int i = 0;
        while (m != n) {
            m >>= 1;
            n >>= 1;
            i++;
        }
        return m << i;
    }
}

作者:笑忘哭
链接:https://leetcode.cn/problems/bitwise-and-of-numbers-range/solutions/624595/hua-tu-fen-xi-201-ti-shu-zi-fan-wei-an-w-vzfb/

3ms:

class Solution {
    public int rangeBitwiseAnd(int m, int n) {
        if (m == 0) return 0;
        while (n > m) {
            n &= n - 1;
        }
        return n;
    }
}

作者:笑忘哭
链接:https://leetcode.cn/problems/bitwise-and-of-numbers-range/solutions/624595/hua-tu-fen-xi-201-ti-shu-zi-fan-wei-an-w-vzfb/

二十一、数学

131. 回文数 ①

 给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。

回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。

  • 例如,121 是回文,而 123 不是。

示例 1:

输入:x = 121
输出:true

示例 2:

输入:x = -121
输出:false
解释:从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。

示例 3:

输入:x = 10
输出:false
解释:从右向左读, 为 01 。因此它不是一个回文数。

提示:

  • -231 <= x <= 231 - 1

方法1:

    public boolean isPalindrome(int x) {
        int left = 0;
        String y = x + "";
        int right = y.length() - 1;
        while (true){
            if (left >= right){
                break;
            }
            if (y.charAt(left) == y.charAt(right)){
                left++;
                right--;
                continue;
            }else {
                return false;
            }
        }
        return true;
    }

方法2:

    public boolean isPalindrome(int x) {
        if (x < 0 || (x != 0 && x % 10 == 0)) {
            return false;
        }

        int reversed = 0;
        int original = x;

        while (x > reversed) {
            reversed = reversed * 10 + x % 10;
            x /= 10;
        }

        return (x == reversed) || (x == reversed / 10);
    }

132. 加一 ①

 给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一。

最高位数字存放在数组的首位, 数组中每个元素只存储单个数字。

你可以假设除了整数 0 之外,这个整数不会以零开头。

示例 1:

输入:digits = [1,2,3]
输出:[1,2,4]
解释:输入数组表示数字 123。

示例 2:

输入:digits = [4,3,2,1]
输出:[4,3,2,2]
解释:输入数组表示数字 4321。

示例 3:

输入:digits = [0]
输出:[1]

提示:

  • 1 <= digits.length <= 100
  • 0 <= digits[i] <= 9

方法1:(0ms)

    public int[] plusOne(int[] digits) {
        if (digits[digits.length - 1] != 9){
            digits[digits.length - 1] += 1;
        }else {
            int index = digits.length - 1;
            while (index >= 0){
                if (digits[index] < 9){
                    digits[index] += 1;
                    break;
                }
                digits[index] = 0;
                index--;
            }
            if (digits[0] == 0){
                digits = new int[digits.length + 1];
                digits[0] = 1;
            }

        }
        return digits;
    }

方法2:(0ms 简洁)

    public int[] plusOne(int[] digits) {
        for (int i = digits.length - 1; i >= 0; i--) {
            digits[i]++;
            digits[i] = digits[i] % 10;
            if (digits[i] != 0) return digits;
        }
        digits = new int[digits.length + 1];
        digits[0] = 1;
        return digits;
    }
    public int[] plusOne(int[] digits) {
        for (int i = digits.length - 1; i >= 0; i--) {
            if (digits[i] == 9) {
                digits[i] = 0;
            } else {
                digits[i] += 1;
                return digits;
            }

        }
        //如果所有位都是进位,则长度+1
        digits= new int[digits.length + 1];
        digits[0] = 1;
        return digits;
    }

133. 阶乘后的零 ② √-

给定一个整数 n ,返回 n! 结果中尾随零的数量。

提示 n! = n * (n - 1) * (n - 2) * ... * 3 * 2 * 1

示例 1:

输入:n = 3
输出:0
解释:3! = 6 ,不含尾随 0

示例 2:

输入:n = 5
输出:1
解释:5! = 120 ,有一个尾随 0

示例 3:

输入:n = 0
输出:0

提示:

  • 0 <= n <= 104

进阶:你可以设计并实现对数时间复杂度的算法来解决此问题吗?

方法1:(33ms)

    public static int trailingZeroes(int n) {
        if (n <= 0){
            return 0;
        }
        int count = 0;
        int countTwo = 0;
        int countFive = 0;
        for (int i = 1; i <= n; i++) {
            int num = i;
            while (num % 10 == 0){
                count++;
                num /= 10;
            }
            while (num % 2 == 0 && num % 5 != 0){
                countTwo++;
                num /= 2;
            }
            while (num % 2 != 0 && num % 5 == 0){
                countFive++;
                num /= 5;
            }

        }
        return count + Math.min(countTwo, countFive);
    }

方法2:(7ms)

public int trailingZeroes(int n) {
    int count = 0;
    for (int i = 1; i <= n; i++) {
        int N = i;
        while (N > 0) {
            if (N % 5 == 0) {
                count++;
                N /= 5;
            } else {
                break;
            }
        }
    }
    return count;

}

作者:windliang
链接:https://leetcode.cn/problems/factorial-trailing-zeroes/solutions/47030/xiang-xi-tong-su-de-si-lu-fen-xi-by-windliang-3/

方法3:(0ms)

public int trailingZeroes(int n) {
    int count = 0;
    while (n > 0) {
        count += n / 5;
        n = n / 5;
    }
    return count;
}

作者:windliang
链接:https://leetcode.cn/problems/factorial-trailing-zeroes/solutions/47030/xiang-xi-tong-su-de-si-lu-fen-xi-by-windliang-3/

134. x的平方根 ①

 给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

示例 1:

输入:x = 4
输出:2

示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。

提示:

  • 0 <= x <= 231 - 1

方法2:

    public int mySqrt(int x) {
        // 特殊值判断
        if (x == 0) {
            return 0;
        }
        if (x == 1) {
            return 1;
        }

        int left = 1;
        int right = x / 2;
        // 在区间 [left..right] 查找目标元素
        while (left < right) {
            int mid = left + (right - left + 1) / 2;
            // 注意:这里为了避免乘法溢出,改用除法
            if (mid > x / mid) {
                // 下一轮搜索区间是 [left..mid - 1]
                right = mid - 1;
            } else {
                // 下一轮搜索区间是 [mid..right]
                left = mid;
            }
        }
        return left;
    }

作者:liweiwei1419
链接:https://leetcode.cn/problems/sqrtx/solutions/7866/er-fen-cha-zhao-niu-dun-fa-python-dai-ma-by-liweiw/

方法3:

    public int mySqrt(int x) {
        if (x == 0) {
            return 0;
        }
        int ans = (int) Math.exp(0.5 * Math.log(x));
        return (long) (ans + 1) * (ans + 1) <= x ? ans + 1 : ans;
    }

135. Pow(x,n) ② ×

实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。

示例 1:

输入:x = 2.00000, n = 10
输出:1024.00000

示例 2:

输入:x = 2.10000, n = 3
输出:9.26100

示例 3:

输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25

提示:

  • -100.0 < x < 100.0
  • -231 <= n <= 231-1
  • n 是一个整数
  • 要么 x 不为零,要么 n > 0 。
  • -104 <= xn <= 104

方法1:(291/306)

    public double myPow(double x, int n) {
        if (x == 0){
            return 0;
        }
        int m = n;
        if (n < 0){
            m = -n;
        }
        double res = 1;
        int count = 1;
        while (count <= m){
            res = res * x;
            count++;
        }
        return n < 0? 1 / res : res;
    }

方法2:(0ms)

解题思路:. - 力扣(LeetCode)

class Solution {
    public double myPow(double x, int n) {
        if(x == 0.0f) return 0.0d;
        long b = n;
        double res = 1.0;
        if(b < 0) {
            x = 1 / x;
            b = -b;
        }
        while(b > 0) {
            if((b & 1) == 1) res *= x;
            x *= x;
            b >>= 1;
        }
        return res;
    }
}

作者:Krahets
链接:https://leetcode.cn/problems/powx-n/solutions/241471/50-powx-n-kuai-su-mi-qing-xi-tu-jie-by-jyd/

136. 直线上最多的点数 ③ ×

给你一个数组 points ,其中 points[i] = [xi, yi] 表示 X-Y 平面上的一个点。求最多有多少个点在同一条直线上。

示例 1:

输入:points = [[1,1],[2,2],[3,3]]
输出:3

示例 2:

输入:points = [[1,1],[3,2],[5,3],[4,1],[2,3],[1,4]]
输出:4

提示:

  • 1 <= points.length <= 300
  • points[i].length == 2
  • -104 <= xi, yi <= 104
  • points 中的所有点 互不相同

9ms:

class Solution {
    public int maxPoints(int[][] points) {
        int n = points.length, ans = 1;
        for (int i = 0; i < n; i++) {
            int[] x = points[i];
            for (int j = i + 1; j < n; j++) {
                int[] y = points[j];
                // 枚举点对 (i,j) 并统计有多少点在该线上, 起始 cnt = 2 代表只有 i 和 j 两个点在此线上
                int cnt = 2;
                for (int k = j + 1; k < n; k++) {
                    int[] p = points[k];
                    int s1 = (y[1] - x[1]) * (p[0] - y[0]);
                    int s2 = (p[1] - y[1]) * (y[0] - x[0]);
                    if (s1 == s2) cnt++;
                }
                ans = Math.max(ans, cnt);
            }
        }
        return ans;
    }
}

作者:宫水三叶
链接:https://leetcode.cn/problems/max-points-on-a-line/solutions/842391/gong-shui-san-xie-liang-chong-mei-ju-zhi-u44s/

35ms: 

class Solution {
    public int maxPoints(int[][] points) {
        int n = points.length, ans = 1;
        for (int i = 0; i < n; i++) {
            Map<String, Integer> map = new HashMap<>();
            // 由当前点 i 发出的直线所经过的最多点数量
            int max = 0;
            for (int j = i + 1; j < n; j++) {
                int x1 = points[i][0], y1 = points[i][1], x2 = points[j][0], y2 = points[j][1];
                int a = x1 - x2, b = y1 - y2;
                int k = gcd(a, b);
                String key = (a / k) + "_" + (b / k);
                map.put(key, map.getOrDefault(key, 0) + 1);
                max = Math.max(max, map.get(key));
            }
            ans = Math.max(ans, max + 1);
        }
        return ans;
    }
    int gcd(int a, int b) {
        return b == 0 ? a : gcd(b, a % b);
    }
}

作者:宫水三叶
链接:https://leetcode.cn/problems/max-points-on-a-line/solutions/842391/gong-shui-san-xie-liang-chong-mei-ju-zhi-u44s/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值