将Anaconda默认地址下载成清华大学开源软件包
conda config --add channels https://mirrors.tuna.tsinghua.edu.cdu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cdu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
试过 但是好像没有什么用!
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple (直接使用这个命令加上你要下载的库就好了)
任何的运行文件在我发的文件中,对应位置都能找的到
这里是从书本P95开始记录的!!!!!
训练步骤:
1.下载预训练的模型(利用迁移学习)这里我下载的是ssd_inception_v2_coco_2018_01_28
2.创建tf_train文件包含子文件models(official,research)scripts(preprocessing(generate_tfrecord.py,xml_to_csv.py)workpaces(create_directories.py))
文件讲解:models是网上下载的r1.13.0版本目标检测文件(tensorflow官网的开源文件)
scripts里面有2个py文件是将xml转换成csv格式在转换成record格式(这两个py文件在文件夹里面有)
workpaces存放所有训练的程序和图片,运行create_directories.py一键创建文件夹(一定要先放了models文件再运行create_directories.py!!!!!)
xml转换成csv格式
3.运行create_directories.py创建文件夹步骤:1.在E:\tf_train\workspaces(输入cmd)2.进行虚拟环境,3.运行create_directories.py并设置名称 下面是代码!
conda activate tf_gpu
python create_directories.py -n hear_tail (后面的hear_tail 为你文件夹的名称)
4.将one_command_train.py放进training文件夹内
5.将下载的预训练模型放进pre_trained_model文件夹内(ssd_inception_v2_coco_2018_01_28)
6.准备数据集:train放入你所有的训练的数据集(jpg,xml)test放入你所要测试的照片格式是(命名如下:1.jpg。2.jpg…)eval是放入预测数据集(jpg,xml)
7.训练模型:E:\tf_train\workspaces\hear_tail(输出cmd)2.进行虚拟环境3.运行one_command_train.py并设置steps,batch_size(超参)
steps代表训练测试次数 batch_size代表一次带多少张照片训练。两个参数可以自行设计。batch_size太大容易报OOM错误,调低batch_size就好了
conda activate tf_gpu
python training\one_command_train.py --steps 10000 --batch_size 6
训练结束!
8.评估模型
更改E:\tf_train\workspaces\hear_tail\training\ssd_inception_v2_coco.config第176num_examples改成你eval照片的个数。(为啥我输入了20,但tfboard上只能看10张照片,不懂!)
在文件夹E:\tf_train\workspaces\hear_tail 打开cmd 并安下面代码操作。
conda activate tf_gpu (进入虚拟环境)
python eval.py --logtostderr --checkpoint_dir=training --eval_dir=evaluation --pipeline_config_path=training\ssd_inception_v2_coco.config (评估模型,并且)
tensorboard --logdir=evaluation\ #查看图片
9.导出训练好模型冻结图
将export_inference_graph.py文件移动至E:\tf_train\workspaces\hear_tail(打开cmd)
conda activate tf_gpu
python export_inference_graph