Tensorflow Object Detection Apl 和 OpenVINO工作套件部署学习笔记

本文档详细记录了从Tensorflow的SSD_Inception_v2_COCO模型进行迁移学习,到使用OpenVINO进行优化和部署的过程。包括数据预处理、模型训练、模型评估、导出冻结图、转换为IR模型以及OpenVINO的环境配置、Demo运行和C++应用程序的编写。重点介绍了如何将训练好的模型在OpenVINO环境下进行推理计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将Anaconda默认地址下载成清华大学开源软件包

conda config --add channels https://mirrors.tuna.tsinghua.edu.cdu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cdu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
试过 但是好像没有什么用!
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple   (直接使用这个命令加上你要下载的库就好了)

任何的运行文件在我发的文件中,对应位置都能找的到

这里是从书本P95开始记录的!!!!!

训练步骤:
1.下载预训练的模型(利用迁移学习)这里我下载的是ssd_inception_v2_coco_2018_01_28
2.创建tf_train文件包含子文件models(official,research)scripts(preprocessing(generate_tfrecord.pyxml_to_csv.py)workpaces(create_directories.py))
文件讲解:models是网上下载的r1.13.0版本目标检测文件(tensorflow官网的开源文件
scripts里面有2个py文件是将xml转换成csv格式在转换成record格式(这两个py文件在文件夹里面有)
workpaces存放所有训练的程序和图片,运行create_directories.py一键创建文件夹(一定要先放了models文件再运行create_directories.py!!!!!
xml转换成csv格式
3.运行create_directories.py创建文件夹步骤:1.在E:\tf_train\workspaces(输入cmd)2.进行虚拟环境,3.运行create_directories.py并设置名称 下面是代码!

conda activate tf_gpu
python create_directories.py -n hear_tail   (后面的hear_tail 为你文件夹的名称)

4.将one_command_train.py放进training文件夹内
5.将下载的预训练模型放进pre_trained_model文件夹内(ssd_inception_v2_coco_2018_01_28)
6.准备数据集:train放入你所有的训练的数据集(jpg,xml)test放入你所要测试的照片格式是(命名如下:1.jpg。2.jpg…)eval是放入预测数据集(jpg,xml)
7.训练模型:E:\tf_train\workspaces\hear_tail(输出cmd)2.进行虚拟环境3.运行one_command_train.py并设置steps,batch_size(超参)
steps代表训练测试次数 batch_size代表一次带多少张照片训练。两个参数可以自行设计。batch_size太大容易报OOM错误,调低batch_size就好了

conda activate tf_gpu

python training\one_command_train.py --steps 10000 --batch_size 6

训练结束!
8.评估模型
更改E:\tf_train\workspaces\hear_tail\training\ssd_inception_v2_coco.config第176num_examples改成你eval照片的个数。(为啥我输入了20,但tfboard上只能看10张照片,不懂!)
在文件夹E:\tf_train\workspaces\hear_tail 打开cmd 并安下面代码操作。

conda activate tf_gpu  (进入虚拟环境)

python eval.py --logtostderr --checkpoint_dir=training --eval_dir=evaluation --pipeline_config_path=training\ssd_inception_v2_coco.config  (评估模型,并且)

tensorboard --logdir=evaluation\   #查看图片

9.导出训练好模型冻结图
将export_inference_graph.py文件移动至E:\tf_train\workspaces\hear_tail(打开cmd)

conda activate tf_gpu

python export_inference_graph
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值