一、实验题目
1.案例分析
任何一个表达式都是由操作数(operand)运算符(operator)和界限符(delimiter)组成的,统称它们为单词。一般地,操作数既可以是常数,也可以是被说明为变量或常量的标识符;运算符可以分为算术运算符、关系运算符和逻辑运算符 3 类;基本界限符 有左右括号和表达式结束符等。为了叙述的简洁,在此仅讨论简单算术表达式的求值问题,这种表达式只含加、减、乘、除4种运算符。读者不难将它推广到更一般的表达式上。
下面把运算符和界限符统称为算符。
我们知道,算术四则运算遵循以下 3条规则:
(1)先乘除,后加减;
(2)从左算到右;
(3)先括号内,后括号外。
根据上述 3条运算规则,在运算的每一步中,任意两个相继出现的算符θ1和θ2之间的优先关系,至多是下面 3 种关系之一 :
θ1 < θ2 θ1的优先权低于θ2
θ1 = θ2 θ1的优先权等于θ2
θ1 > θ2 θ1的优先权高于θ2
表 3.1 定义了算符之间的这种优先关系。
由规则(1), 先进行乘除运算,后进行加减运算,所以有 “+” < “*”; “+” < “/”; “*” >"+"; “/” > “+” 等。
由规则(2), 运算遵循左结合性,当两个运算符相同时,先出现的运算符优先级高,所以有"+" > “+”; “-” > “-”; “*” > “*”; “/” > “/”。
由规则(3), 括号内的优先级高,+、-、*和/为θ1时的优先性均低千 (" “但高于 " )”。
表中的 “(” = “)” 表示当左右括号相遇时,括号内的运算已经完成。为了便千实现,假设每个表达式均以"#“开始,以”#" 结束。所以"#" = “#” 表示整个表达式求值完毕。")“与 “(”、"#”与”)" 以及"(“与”#" 之间无优先关系,这是因为表达式中不允许它们相继出现,一旦遇到这种情况,则可以认为出现了语法错误。在 下面的讨论中,我们暂假定所输人的表达式不会出现语法错误。
2.案例实现
为实现算符优先算法,可以使用两个工作栈,一个称做OPTR,用以寄存运算符;另一个称作OPND, 用以寄存操作数或运算结果。
3.算法步骤
1.初始化OPTR栈和OPND栈,将表达式起始符“#”压入OPTR栈。
2.扫描表达式,读人第一个字符ch,如果表达式没有扫描完毕至“#”或OPTR的栈顶元素不为“#”时,则循环执行以下操作:
若ch不是运算符,则压入OPND栈,读入下一字符ch;
若ch是运算符,则根据OPTR 的栈顶元素和ch的优先级比较结果,做不同的处理:
若是小于,则ch 压入OPTR栈,读入下一字符ch;
若是大于,则弹出OPTR栈顶的运算符,从 OPND栈弹出两个数,进行相应运算,结果压入OPND栈;
若是等于,则OPTR 的栈顶元素是“(”且ch是“)”,这时弹出OPTR栈顶的“(”,相当于括号匹配成功,然后读人下一字符ch。
3.OPND栈顶元素即为表达式求值结果,返回此元素。
4.算法描述
char EvaluateExpression ()
{//算术表达式求值的算符优先算法,设OPTR和OPND分别为运算符栈和操作数栈
InitStack(OPND); //初始化OPND栈
InitStack(OPTR); //初始化OPTR栈
Push (OPTR,'#') ; // 将表达式起始符"#" 压人OPTR栈
cin>>ch;
while(ch!='#' | | GetTop(OPTR) !='#' ) //表达式没有扫描完毕或OPTR的栈顶元素不为"# "
{
if (!In (ch)) {Push (OPND, ch); cin»ch;} //ch不是运算符则进OPND栈
else
switch (Precede (GetTop (OPTR) , ch)) //比较OPTR的栈顶元素和ch的 优先级
{
case'<':
Push(OPTR,ch);cin>>ch; //当前字符ch压入OPTR栈,读入下一字符ch
break;
case'>':
Pop(OPTR,theta); //弹出OPTR栈顶的运算符
Pop(OPND,b);Pop(OPND,a); //弹出OPND栈顶的两个运算数
Push (OPND, Operate (a, theta, b·)); / /将运算结果压入OPND栈
break;
case'=': //OPTR的栈顶元素是"("且ch是")"
Pop(OPTR,x) ;cin>>ch; //弹出OPTR栈顶的"(", 读入下一字符ch
break;
}//switch
}//while
return GetTop (OPND) ; //OPND栈顶元素即为表达式求值结果
}
算法调用的三个函数需要读者自行补充完成。其中函数In是判定读入的字符ch是否为运算符,Precede 是判定运算符栈的栈顶元素与读入的运算符之间优先关系的函数,Operate为进行二元运算的函数。
二、工具环境
Window10操作系统,Microsoft Visual C++2010学习版 集成开发环境,C语言
三、实验问题
另外需要特别说明的是,上述算法中的操作数只能是一位数,因为这里使用的OPND栈是字符栈,如果要进行多位数的运算,则需要将OPND栈改为数栈,读入的数字字符拼成数之后再入栈。 读者可以改进此算法,使之能完成多位数的运算。
四、实验代码
#include<stdio.h>
#include<stdlib.h>
#define MAXSIZE 100 //顺序栈存储空间的初始分配址
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef int Status;
typedef char SElemType;
typedef struct
{
char *base; //栈底指针
char *top; //栈顶指针
int stacksize; //栈可用的最大容量
}SqStack;
Status InitStack(SqStack *S);//构造一个空栈s
Status Push(SqStack *S,char e);//插入元素e为新的栈顶元素
Status Pop(SqStack *S,char *e);//删除s的栈顶元素,用e返回其值
SElemType GetTop(SqStack S);//返回s的栈顶元素,不修改栈顶指针
Status In(char e);//判断读入字符是否为运算符
SElemType Precede(char a,char b);//比较运算符的优先级,a为纵轴值,b为横轴值
int Operate(int i,char theta,int j);//计算a(theta)b结果
char EvaluateExpression();//算术表达式求值的算符优先算法,设OPTR和OPND分别为运算符栈和操作数栈
int main()
{
printf("请输入算术表达式,并以#结束(操作数只能是一位数):");
printf("表达式结果是:%d",EvaluateExpression());
return 0;
}
Status InitStack(SqStack *S)
{//构造一个空栈s
S->base=(char *)malloc(MAXSIZE*sizeof(char));//为顺序栈动态分配一个最大容量为MAXSIZE的数组空间
if(!S->base) exit(OVERFLOW); //存储分配失败
S->top=S->base; //top初始为base,空栈
S->stacksize=MAXSIZE; //stacksize置为栈的最大容量MAXSIZE
return OK;
}
Status Push(SqStack *S,char e)
{//插入元素e为新的栈顶元素
if(S->top-S->base==S->stacksize) return ERROR; //栈满
*S->top++=e; //元素e压入栈顶,栈顶指针加1
return OK;
}
Status Pop(SqStack *S,char *e)
{//删除s的栈顶元素,用e返回其值
if(S->top==S->base) return ERROR; //栈空
*e=*--S->top; //栈顶指针减1,将栈顶元素赋给e
return OK;
}
SElemType GetTop(SqStack S)
{//返回s的栈顶元素,不修改栈顶指针
if(S.top!=S.base) //栈非空
return *(S.top-1); //返回栈顶元素的值,栈顶指针不变
}
Status In(char e)
{//判断读入字符是否为运算符
if(e=='+'||e=='-'||e=='*'||e=='/'||e=='('||e==')'||e=='#')
return OK;//是
else
return ERROR;//不是
}
SElemType Precede(char a,char b)
{//比较运算符的优先级,a为纵轴值,b为横轴值
char f;
if(a=='+'||a=='-')
{
if(b=='+'||b=='-'||b==')'||b=='#')
f='>';
else if(b=='*'||b=='/'||b=='(')
f='<';
}
else if(a=='*'||a=='/')
{
if(b=='+'||b=='-'||b=='*'||b=='/'||b==')'||b=='#')
f='>';
else if(b=='(')
f='<';
}
else if(a=='(')
{
if(b=='+'||b=='-'||b=='*'||b=='/'||b=='(')
f='<';
else if(b==')')
f='=';
}
else if(a==')')
{
if(b=='+'||b=='-'||b=='*'||b=='/'||b==')'||b=='#')
f='>';
}
else if(a=='#')
{
if(b=='+'||b=='-'||b=='*'||b=='/'||b=='(')
f='<';
else if(b=='#')
f='=';
}
return f;
}
int Operate(int i,char theta,int j)
{//计算a(theta)b结果
int result;
switch(theta) {
case '+': result = i + j; break;
case '-': result = i - j; break;
case '*': result = i * j; break;
case '/': result = i / j; break;
}
return result;
}
char EvaluateExpression()
{//算术表达式求值的算符优先算法,设OPTR和OPND分别为运算符栈和操作数栈
SqStack OPND,OPTR;
int ch; //把读入的字符转换为整数型,即ASCII表值
char a,b,theta,x; //ch为当前读入字符, theta为运算符,x仅仅只是变量寄存弹出值,对计算表达式无影响
InitStack(&OPND); //初始化OPND栈,寄存操作数和运算结果
InitStack(&OPTR); //初始化OPTR栈,寄存运算符
Push(&OPTR,'#');
ch=getchar();
while(ch!='#'||GetTop(OPTR)!='#')
{
printf(" %c\n",ch);
if(!In(ch))//ch不是运算符则进OPND栈
{
ch=ch-48;//数字字符转换为对应整数
Push(&OPND,ch);
ch=getchar();
}
else
{
switch(Precede(GetTop(OPTR),ch))
{//优先级选择
case '<':
Push(&OPTR,ch);
ch=getchar();
break;
case '>':
Pop(&OPTR,&theta);
Pop(&OPND,&b);
Pop(&OPND,&a);
Push(&OPND,Operate(a,theta,b));
break;
case '=':
Pop(&OPTR,&x);
ch=getchar();
break;
}
}
}
return GetTop(OPND);
}