55、多Web API仓库的基于链接的全局视图

多Web API仓库的基于链接的全局视图

1. 引言

可复用Web API的选择和聚合正成为构建新的增值应用程序的一种新兴开发方式。Web API作为可在网络上共享的数字资源,具有通用性,能由第三方提供,可作为解决即时问题的生产力工具。

目前,Web API选择的现有方法多依赖于ProgrammableWeb仓库,因其广受欢迎。然而,该仓库主要侧重于基于功能的Web API描述,通过分类和标签对API进行分类,并存储所采用的数据格式、协议以及使用这些API开发的混搭应用列表。实际上,不同的仓库会强调Web API共享的不同方面。例如,Mashape采用类似Twitter的组织方式,将每个Web API与采用或表示感兴趣的开发者列表相关联,并提供Web API调用的技术细节。其他仓库(如theRightAPI)则提供了以社区为导向的Web API视角。

在这种情况下,不同的仓库就像信息孤岛,存在以下问题:
- 存储互补或部分重叠的Web API特征。
- 相同的Web API或混搭应用在不同仓库中多次注册。
- 无法利用不同仓库中Web API和混搭应用之间的相似性来丰富搜索结果。

为了解决这些问题,我们提出了一个基于链接数据原则的框架,旨在增强跨仓库的Web API浏览和搜索,以支持混搭应用的开发。该框架基于一个统一的Web API模型,为每个仓库的内容提供链接视图,使仓库内容可被机器处理,并能通过非专有工具(如SPARQL端点)访问,从而实现透明的Web API搜索。

2. 动机
2.1 运行示例

以ProgrammableWeb(PW)和Mashape(MP)

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值