Shell计算退伍日期

#!/bin/bash
#Program:
# You input your demobilization date, i calculate now many days before you demobilize.
#History:
#2015/06/18 Awake First release
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:~/bin
export PATH

echo "This program will try to colculate :"
echo "How many days before your demobilization date ..."

read -p "Please input your demobilization date (YYYYMMDD ex>20180401):" date2 //让用户输入date2的变量内容如20180401这样的八位数的日期

date_d=$(echo $date2 | grep '[0-9]\{8\}') //利用正则表达式测试一下输入的内容是否正确,看看是否有八个数字,我在shell下测试如果仅输入echo 12345678 | grep '[0-9]\{8\}',那么可以输出12345678这个数字,如果输入的位数不够,或者不是数字那么就没有显示
if [ "$date_d" == "" ]; then //如果date_d这个变量内容是空,那么就执行下面的语句告诉用户输入的格式不对,退出,并返回值为1(1代表什么是OS error code 1: Operation not permitted)
        echo "You input the wrong date format...."
        exit 1
fi
//开始计算日期,这部分的计算是建立在用户输入了8位数字的前提下的
declare -i date_dem=`date --date="$date2" +%s` //声明变量date_dem(退伍日期)的秒数,也即1970年1月1日至输入的日期($date2)的秒数(这两行我认为没有整数运算,只是一个变量名等于一个命令而已,可以将declare -i去掉,我试过去掉也是正常的)
declare -i date_now=`date +%s` //声明变量date_now为现在的时间,也即1970年1月1日至现在系统时间的秒数
declare -i date_total_s=$(($date_dem-$date_now)) //声明变量date_total_s的数值为退伍时间减去现在的时间,即还有多少时间(秒)退伍?
declare -i date_d=$(($date_total_s/60/60/24))  //这个date_d不要和上面的date_d变量混淆,是剩余的秒数除以60秒、60分钟、24小时,即得剩余天数(这种格式只支持整数的算法)

if [ "$date_total_s" -lt "0" ]; then //判断是否退伍,如果$date_total_s小于0了,也就是用户输入了一个历史时间,那么执行下面的命令,提示表示已经退伍了,并且显示退伍多少天了,$((-1*$date_d))只是将那个小于0的数值(负数)变成正数
        echo "You had been demobilization before:" $((-1*$date_d)) "ago"
else //否则,执行下面的命令,
        declare -i date_h=$(($(($date_total_s-$date_d*60*60*24))/60/60)) //其实是两层计算式,编者是要算出除几天外,还有几个小时,看来真是迫切啊!先从最里边开始看,还有多少时间退伍(秒数)减去剩余的天数乘以60秒、60分、24小时(也是秒数,只不过这个秒数是整天的秒数,没有余数的)得到的结果也就是一天中剩下的秒数,在除以60秒、60分,也就是小时数了。
        echo "You will demobilize after $date_d days and $date_h hours."
fi
[root@awake scripts]#//其实我感觉这个例子挺难理解的,估计也是编者做了多方测试,得到的结果。 最难理解的是date_h的计算,要用总的剩余秒数减去剩余天数【(date_d)*60*60*24】得出剩余的秒数再除以60再除以60,得出剩余的小时数,这个逻辑有点绕。
基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于通过数值方法提升NMPC在动态系统中的鲁棒性与稳定性。文中结合实时迭代机制,构建了能够应对系统不确定性与外部扰动的双模预测控制框架,并利用Matlab进行仿真验证,展示了该模型在复杂非线性系统控制中的有效性与实用性。同时,文档列举了大量相关的科研方向与技术应用案例,涵盖优化调度、路径规划、电力系统管理、信号处理等多个领域,体现了该方法的广泛适用性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于解决非线性动态系统的实时控制问题,如机器人控制、无人机路径跟踪、微电网能量管理等;②帮助科研人员复现论文算法,开展NMPC相关创新研究;③为复杂系统提供高精度、强鲁棒性的预测控制解决方案。; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注NMPC的实时迭代机制与双模稳定设计原理,并参考文档中列出的相关案例拓展应用场景,同时可借助网盘资源获取完整代码与数据支持。
UWB-IMU、UWB定位对比研究(Matlab代码实现)内容概要:本文介绍了名为《UWB-IMU、UWB定位对比研究(Matlab代码实现)》的技术文档,重点围绕超宽带(UWB)与惯性测量单元(IMU)融合定位技术展开,通过Matlab代码实现对两种定位方式的性能进行对比分析。文中详细阐述了UWB单独定位与UWB-IMU融合定位的原理、算法设计及仿真实现过程,利用多传感器数据融合策略提升定位精度与稳定性,尤其在复杂环境中减少信号遮挡和漂移误差的影响。研究内容包括系统建模、数据预处理、滤波算法(如扩展卡尔曼滤波EKF)的应用以及定位结果的可视化与误差分析。; 适合人群:具备一定信号处理、导航定位或传感器融合基础知识的研究生、科研人员及从事物联网、无人驾驶、机器人等领域的工程技术人员。; 使用场景及目标:①用于高精度室内定位系统的设计与优化,如智能仓储、无人机导航、工业巡检等;②帮助理解多源传感器融合的基本原理与实现方法,掌握UWB与IMU互补优势的技术路径;③为相关科研项目或毕业设计提供可复现的Matlab代码参考与实验验证平台。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现细节,重点关注数据融合策略与滤波算法部分,同时可通过修改参数或引入实际采集数据进行扩展实验,以加深对定位系统性能影响因素的理解。
本系统基于MATLAB平台开发,适用于2014a、2019b及2024b等多个软件版本,并提供了可直接执行的示例数据集。代码采用模块化设计,关键参数均可灵活调整,程序结构逻辑分明且附有详细说明注释。主要面向计算机科学、电子信息工程、数学等相关专业的高校学生,适用于课程实验、综合作业及学位论文等教学与科研场景。 水声通信是一种借助水下声波实现信息传输的技术。近年来,多输入多输出(MIMO)结构与正交频分复用(OFDM)机制被逐步整合到水声通信体系中,显著增强了水下信息传输的容量与稳健性。MIMO配置通过多天线收发实现空间维度上的信号复用,从而提升频谱使用效率;OFDM方案则能够有效克服水下信道中的频率选择性衰减问题,保障信号在复杂传播环境中的可靠送达。 本系统以MATLAB为仿真环境,该工具在工程计算、信号分析与通信模拟等领域具备广泛的应用基础。用户可根据自身安装的MATLAB版本选择相应程序文件。随附的案例数据便于快速验证系统功能与性能表现。代码设计注重可读性与可修改性,采用参数驱动方式,重要变量均设有明确注释,便于理解与后续调整。因此,该系统特别适合高等院校相关专业学生用于课程实践、专题研究或毕业设计等学术训练环节。 借助该仿真平台,学习者可深入探究水声通信的基础理论及其关键技术,具体掌握MIMO与OFDM技术在水声环境中的协同工作机制。同时,系统具备良好的交互界面与可扩展架构,用户可在现有框架基础上进行功能拓展或算法改进,以适应更复杂的科研课题或工程应用需求。整体而言,该系统为一套功能完整、操作友好、适应面广的水声通信教学与科研辅助工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
数据结构部分 -- 一、栈和队列 Stack && Queue 栈 - 结构图 alt 队列 - 结构图 alt 双端队列 - 结构图 alt 二、 链表 Linked List 单链表 - 结构图 alt 单项循环链表 - 结构图 alt 双向链表 - 结构图 alt 三、 树 基础定义及相关性质内容 - 结构图 alt - 另外可以参考浙江大学数据结构课程中关于遍历方式的图,讲的十分详细 alt 使用链表实现二叉树 二叉查找树 - 非空左子树的所有键值小于根节点的键值 - 非空右子树的所有键值大于根节点的键值 - 左右子树都是二叉查找树 补充 - 完全二叉树 - 如果二叉树中除去最后一层节点为满二叉树,且最后一层的结点依次从左到右分布,则此二叉树被称为完全二叉树。 - 满二叉树 - 如果二叉树中除了叶子结点,每个结点的度都为 2,则此二叉树称为满二叉树。 代码下载地址: https://pan.quark.cn/s/b48377ea3e78 四、 堆 Heap 堆满足的条件 - 必须是完全二叉树 - 各个父节点必须大于或者小于左右节点,其中最顶层的根结点必须是最大或者最小的 实现方式及条件 - 使用数组实现二叉堆,例如下图的最大堆,在数组中使用[0,100,90,85,80,30,60,50,55]存储,注意上述第一个元素0仅仅是做占位; - 设节点位置为x,则左节点位置为2x,右节点在2x+1;已知叶子节点x,根节点为x//2; - 举例说明: - 100为根节点(位置为1),则左节点位置为2,即90,右节点位置为3,即85; - 30为子节点(位置为5),则根节点为(5//2=2),即90; 根据上述条件,我们可以绘制出堆的两种形式 - 最大堆及实现 al...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值