深度学习
文章平均质量分 51
ZGlenfiddich
这个作者很懒,什么都没留下…
展开
-
tensorflow2.x暴力安装,必推!!
tensorflow安装原创 2022-09-27 10:04:45 · 674 阅读 · 0 评论 -
python绘制散点图
python绘制散点图原创 2022-08-01 19:52:11 · 16690 阅读 · 1 评论 -
使用python绘制折线图
使用Python绘图,气象绘图原创 2022-07-31 16:13:20 · 81299 阅读 · 0 评论 -
深度学习激活函数的选取
如果输出是 0、1 值(二分类问题),则输出层选择 sigmoid 函数,然后其它的所有单元都选择 Relu 函数。 这是很多激活函数的默认选择,如果在隐藏层上不确定使用哪个激活函数,那么通常会使用Relu激活函数。有时,也会使用tanh激活函数,但Relu的一个优点是:当????是负值的时候,导数等于0。 这里也有另一个版本的Relu被称为Leaky Relu。 当????是负值时,这个函数的值不是等于0,而是轻微的倾斜,如图。 这个函数通常比 Relu 激活函数效果要好,尽管在实际中 Leaky ReL原创 2022-01-20 16:34:36 · 540 阅读 · 0 评论 -
偏差和方差
一、诊断偏差和方差当你运行一个学习算法时,如果这个算法的表现不理想,那么多半是出现两种情况: 要么是偏差比较大,要么是方差比较大。换句话说,出现的情况要么是欠拟合,要么是过拟 合问题。那么这两种情况,哪个和偏差有关,哪个和方差有关,或者是不是和两个都有关? 搞清楚这一点非常重要,因为能判断出现的情况是这两种情况中的哪一种。其实是一个很有效的指示器,指引着可以改进算法的最有效的方法和途径。训练集误差和交叉验证集误差近似时:偏差/欠拟合交叉验证集误差远大于训练集误差时:方差/过拟合二、正则化与偏原创 2021-12-05 20:32:21 · 894 阅读 · 0 评论 -
评估假设函数是否过拟合的方法
为了检验算法是否过拟合,我们将数据分成训练集和测试集,通常用 70%的数据作为训练集,用剩下30%的数据作为测试集。很重要的一点是训练集和测试集均要含有各种类型的数据,通常我们要对数据进行“洗牌”,然后再分成训练集和测试集。测试集评估在通过训练集让我们的模型学习得出其参数后,对测试集运用该模型,我们有两种方式计算误差:1.对于线性回归模型,我们利用测试集数据计算代价函数????2.对于逻辑回归模型,我们除了可以利用测试数据集来计算代价函数外:...原创 2021-12-03 14:44:55 · 1243 阅读 · 0 评论 -
总结使用神经网络的一般步骤
第一件要做的事是选择网络结构,即决定选择多少层以及决定每层分别有多少个单元。 第一层的单元数即我们训练集的特征数量。 最后一层的单元数是我们训练集的结果的类的数量。 如果隐藏层数大于 1,确保每个隐藏层的单元个数相同,通常情况下隐藏层单元的个数越多越好。 我们真正要决定的是隐藏层的层数和每个中间层的单元数。训练神经网络:1. 参数的随机初始化2. 利用正向传播方法计算所有的ℎ????(????)3. 编写计算代价函数 ???? 的代码4. 利用反向传播方法计算所有偏导数5. 利用数值原创 2021-11-25 20:51:58 · 683 阅读 · 0 评论 -
Anaconda安装与配置python
一、Anaconda下载关于Anaconda安装,大家都会想到去Anaconda官网https://www.anaconda.com/下载最新版,但是官网的下载速度很慢,我们可以选择国内的镜像源进行下载https://mirror.bfsu.edu.cn/anaconda/archive/,根据实际的系统选择对应的32位或者64位版本进行下载即可:二、Anaconda安装双击下载好的Anaconda,弹出界面进行安装:点击next:点击I Agree:根据个人..原创 2021-09-09 09:44:42 · 1153 阅读 · 0 评论 -
教程:TensorFlow2.x完美安装并嵌入至PyCharm
最近在自学深度学习,第一个问题就是tensorflow的安装问题,话不多说直接上干货,根据此步骤安装即可。一、一般安装步骤1.安装Python环境。本文的Python是3.8.0 64位版本的,建议使用Anaconda安装。2.使用 Anaconda 自带的 conda 包管理器建立一个 Conda 虚拟环境,并进入该虚拟环境。在 Windows 下,需要打开开始菜单中的 “Anaconda Prompt” 进入 Anaconda 的命令行环境。在命令行下输入:conda create .原创 2021-06-29 19:07:31 · 704 阅读 · 0 评论