福州大学2025ACM寒假集训专题三总结

1.Priority Queue

此题为优先队列基础题,掌握即可,再按题中要求写代码,代码如下:

#include<iostream>
#include<queue>
#include<string>
using namespace std;
int main()
{
    priority_queue<int> q;
    int n;
    string s;
    string s1="insert";
    string s2="extract";
    string s3="end";
    cin>>s;
    while(s!=s3)
    {
        if(s==s1) 
        {
            cin>>n;
            q.push(n);
        }
        else if(s==s2)
        {
            cout<<q.top()<<endl;
            q.pop();
        }
        cin>>s;
    }
    return 0;
}

2.ST 表 && RMQ 问题

此题为对ST表的应用,按照题目意思使用快速读入,对log_2进行预处理,后面就是ST表的操作,代码如下:

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int M=1e5+5;
int smax[M][31],log_2[M];
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
    return x*f;
}
int main()
{
    int n,m;
    n=read();
    m=read();
    log_2[1]=0;
    for(int i=2;i<=n;i++)
    {
        log_2[i]=log_2[i/2]+1;
    }
    for(int i=1;i<=n;i++) smax[i][0]=read();
    for(int j=1;j<=log_2[n];j++)
    {
        for(int i=1;i+(1<<j)-1<=n;i++)
        {
            smax[i][j]=max(smax[i][j-1],smax[i+(1<<(j-1))][j-1]);
        }
    }
    int l,r;
    for(int i=1;i<=m;i++)
    {
        l=read();
        r=read();
        int s=log_2[r-l+1];
        printf("%d\n",max(smax[l][s],smax[r-(1<<s)+1][s]));
    }
    return 0;
}

3.合并果子

由题意不难知道,最优解为每次合并重量最小的两堆果子,则我们用优先队列解决此题,代码如下:

#include<iostream>
#include<vector>
#include<queue>
using namespace std;
#define int long long
signed main()
{
    int n,num;
    int ans=0;
    priority_queue<int,vector<int>,greater<int> > q;
    cin>>n;
    for(int i=0;i<n;i++)
    {
        cin>>num;
        q.push(num);
    }
    while(q.size()>1)
    {
        int t1=q.top();
        q.pop();
        int t2=q.top();
        q.pop();
        ans+=t1+t2;
        q.push(t1+t2);
    }
    cout<<ans;
    return 0;
}
4.约瑟夫问题 

遇到环的问题我们把它链化,此题可用队列解,每次对编号进行检查,然后决定队首的去留,代码如下:

#include<iostream>
#include<queue>
using namespace std;
int main()
{
    int n,m,num;
    int k=0;
    queue<int> q;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        q.push(i);
    }
    while(q.size()>0)
    {
        k++;
        if(k==m)
        {
            cout<<q.front()<<" ";
            q.pop();
            k=0;
        }
        else
        {
            q.push(q.front());
            q.pop();
        }
    }
    return 0;
}

5.Look Up S

此题可用栈的方法来解,对每只牛编号在遍历,与栈头进行比较,若不为空栈且大于栈头身高,则找到栈头的仰望对象,进行记录,代码如下:

#include<bits/stdc++.h>
using namespace std;
int main()
{
    int n;
    cin>>n;
    vector<int> h(n);
    vector<int> re(n,0);
    for(int i=0;i<n;i++) cin>>h[i];
    stack<int> s;
    for(int i=0;i<n;i++)
    {
        while(!s.empty()&&h[i]>h[s.top()])
        {
            re[s.top()]=i+1;
            s.pop();
        }
        s.push(i);
    }
    for(int i=0;i<n;i++) cout<<re[i]<<endl;
    return 0;
}

6.国旗计划 

本题要计算每个战士必须参加时覆盖全部边境线所需最少战士数,由于边境线是环形,可将区间复制一份处理,即二倍链,采用倍增算法优化,通过预处理和跳跃计算减少遍历,降低时间复杂度,代码如下:

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 2e5 + 5;
int n, m;
int ans[MAXN];
int f[MAXN * 2][20];

struct node {
    int id;
    int l, r;
} s[MAXN * 2];

bool cmp(node a, node b) {
    return a.l < b.l;
}

void pre() {
    for (int i = 1, p = 1; i <= 2 * n; i++) {
        while (p <= 2 * n && s[p].l <= s[i].r) {
            p++;
        }
        f[i][0] = p - 1;
    }
    for (int i = 1; i < 20; i++) {
        for (int j = 1; j <= 2 * n; j++) {
            f[j][i] = f[f[j][i - 1]][i - 1];
        }
    }
}

void solve(int k) {
    int rr = s[k].l + m;
    int tot = 1;
    int p = k;
    for (int i = 19; i >= 0; i--) {
        if (f[k][i] != 0 && s[f[k][i]].r < rr) {
            tot += (1 << i);
            k = f[k][i];
        }
    }
    ans[s[p].id] = tot + 1;
}

int main() {
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) {
        scanf("%d %d", &s[i].l, &s[i].r);
        if (s[i].r < s[i].l) {
            s[i].r += m;
        }
        s[i].id = i;
    }
    sort(s + 1, s + 1 + n, cmp);
    for (int i = 1; i <= n; i++) {
        s[i + n] = s[i];
        s[i + n].l = s[i].l + m;
        s[i + n].r = s[i].r + m;
    }
    pre();
    for (int i = 1; i <= n; i++) {
        solve(i);
    }
    for (int i = 1; i <= n; i++) {
        printf("%d ", ans[i]);
    }
    return 0;
}

心得体会:

通过本专题的学习,我对栈,队列,ST表有了一定的应用能力,六道题目有难有易,尤其是最后一道题,考虑的东西和使用的方法很多,值得我去深入探究,我也对后续学习充满信心。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值