- 博客(60)
- 资源 (5)
- 论坛 (1)
- 收藏
- 关注
原创 小区重选
参考文档https://blog.csdn.net/u010202588/article/details/54646080https://wenku.baidu.com/view/8db7c31c5acfa1c7ab00cc58.html前言: 小区重选分为同频小区重选(Intra)和异频小区重选(Intre),与重选有关的消息主要是SIB1,SIB3,SIB4,SIB5。 当前手机驻留在服务小区超过1s,以及目标小区比当前小区更优(ranking)就会触发重选。...
2021-01-17 13:14:41
18
原创 NAS层架构03
参考文档目录 1 MM/GMM 模块 2 CM模块 3 RABM 模块一 MM(Mobility Management) 1.1 架构 1.2 MM 模块主要流程 TMSI 重配 |Authentication|Identification|IMSI detach|Abort| MM 消息|Location update 1.2 日志二 GMM(GPR...
2020-12-18 13:45:25
232
1
原创 NAS层架构02
前言:目录 MN 模块 REG 模块 SM 模块 MBMSM 模块 CB 模块 关键字参考文档https://blog.csdn.net/u011212816/article/details/97394498https://www.csdn.net/gather_21/MtjaIg4sNTgwMTEtYmxvZwO0O0OO0O0O.htmlhttps://blog.csdn.net/u01121...
2020-11-25 14:14:03
75
1
原创 LTE CSFB
参考文档:目录: 简介 架构 主要原理 通话流程/日志 FR一 简介 CSFB 全称: Circuit Switched Fallback (CSFB),目前国内基本都是IMS Call, 部分三四线城市会有CSFB 过程。 场景:通话时候,LTE 网络切换到 UMTS, 或者GSM网络上进行。 在海外很多国家这种方案还是比较常见。 MME MSC ...
2020-11-13 09:44:11
39
原创 数学期望 极小值的几种求法
前言: 其中一维搜索方法这种思想,在图像二值化里面有应用。像二维码算法里面的条形码二值化,就是这种算法的进阶版。缺点是只能按照一个方向进行搜索,且步伐需要调整。目录: 数学期望例子 一维搜索方法求极值 黄金分隔法求极值一 数学期望例子 普查某种疾病,为此要抽验N个人血,有两种方法: 方案1: 每个人分别去检验,这需要检验N次 方案2: k个人混合在一起检验,如果检验出来呈阳性,就全部检测一次,需要K...
2020-10-26 15:10:25
175
原创 PLMN SPN运营商名称显示来源
前言: 经常遇到SPN,PLMN 显示的问题,做了一个简单总结。这篇文章重点讲手动搜网流程(QUERY_AVAILABLE_NETWORKS),界面上UI显示的OPERATOR,主要是Telephony/Service处理。EONS:Enhanced Operator Name StringPLMN: Public Land Mobile Network(公共陆地移动网络)SPN: Service Provider Name,就是当前发行SIM卡的...
2020-10-16 11:50:39
64
1
原创 NAS 层架构_01
前言 这里主要结合通话消息,分析一下对应的流程參考文檔 3GPP 24.008(MM/GMM/CC 流程) 3GPP 24.080-084(PLMN 選擇) 3GPP 23.122 (補充業務 USSD) 3GPP 24.011 (短消息服務) 3GPP.109 (Terminal logical 測試接口)縮語: TC: Test Control:目录: Modem 系统架构...
2020-09-27 11:46:01
87
原创 QCRIL3_从RILJ到QMI 消息流程
前言 这里通过语音通话的例子,分析一下Android RILD 如何把消息发送到QCRIL ,以及QCRIL 如何把消息发送到ModemHIDLHAL目录 1: 消息流程 2: 模块讲解 3: 日志 ...
2020-09-18 15:18:17
46
原创 QCRIL2 飞行模式流程
前言: 这里主要结合RADIO_POWER on 消息介绍一下RIL.JAVA模块,QCRIL 模块 Moudules模块(SIM Card, Nas模块)怎么调用QCCI 把消息发给Modem目录 1: 整体架构 2: 消息流程 3: 日志解析二 消息流程 ...
2020-09-04 13:50:05
41
原创 标准正态分布表_机器学习
前言: 最近帮别人搞了jionPoint统计癌症趋势。朋友问了,标准正态分布表到底是怎么算出来的?研究了一下,主要还是通过泰勒公式迭代法求出来的。 目录 1: 计算原理 2: 代码实现一 计算原理 从图上很明显可以看到 书上的计算过程通过: ...
2020-08-25 17:43:56
139
原创 医院排班程序
前言: 这个前后做了几个月,需求一直在变更目录 需求说明 代码架构一 需求说明 1.1 班次类型 工作日班次 医生 夜班 连留 一线医生 上 上 二线医生 上 周五班次(夜班算周末夜班) 医生 夜班 连留 一线医生 上 上 二线医生 上 ...
2020-08-17 10:02:11
185
原创 DNN原理推导一_机器学习
前言: 矩阵求导: https://zhuanlan.zhihu.com/p/24709748目录: DNN 基本概念 网络模型 前向算法一 DNN 基本概念 DNN (Deep Neural Network) 相对BP 网络,增加了隐藏层的层数二 网络模型 http://alexlenail.me/NN-SVG/index.html 三 前向算法 前向算法...
2020-08-03 13:58:49
81
原创 DNN原理推导二_机器学习
前言: 这里主要通过反向传播,更新网络层的权重系数目录 算法流程 权重系数更新证明 灵敏度更新证明一 算法流程 输入: m个样本 for iter in range(Max) for i to 1 to m: ...
2020-08-03 13:58:35
57
原创 高通阅读笔记_QCRIL
参考文档 80-n4863-1_c_qmi_idl_qcci_qcsi_overview IDLInterface Definition Language QCSI: QMI Common Service Interface QCCI QMI Common Client Interface IPC InterProcess Communication 是指在不同进程之间传播或交换信息。IPC的方式通常有管道(包括无名管道和命名管道)...
2020-07-31 11:50:11
80
原创 矩阵向量链式法则四_机器学习
前言 参考文档 https://www.cnblogs.com/pinard/p/10825264.html目录: 向量对向量的链式求导 标量对向量的链式求导 标量对多个矩阵链式求导一 向量对向量的链式求导 这里默认为分子布局,雅克比矩阵 假设 其中 向量 向量 向量 则下面...
2020-07-22 18:06:09
112
原创 医学数据处理1_ 病人样本去重
前言: 最近帮朋友做了一些医学统计大数据处理的程序,遇到一种FDR陆续更新目录: 1: 病人样本去重 2: FDR 算法一 病人样本去重二 FDR 算法 https://www.jianshu.com/p/d86823ecd3ac https://wenku.baidu.com/view/a518f01aa45177232f60a2a2.htm...
2020-07-20 17:39:44
46
原创 矩阵向量求导微分三_机器学习
参考文档 https://www.cnblogs.com/pinard/p/10791506.html目錄 矩陣微分 微分性質 微分法對矩陣向量的求導一 矩陣微分 1.1 微分公式 1.2 多變量微分: 1.3 矩阵微分: 其中 1.3 利用了矩阵迹性质 证明:...
2020-07-15 17:13:09
47
原创 矩阵向量求导二 标量对向量 _机器学习
参考文档 标量对向量布局原则是: 分母布局 https://www.cnblogs.com/pinard/p/10773942.html目录 标量对向量求导 标量对矩阵求导 基本法则一 标量对向量求导 1.1 , 证明: 因为 所以 1.2 证明:...
2020-06-29 15:37:52
111
原创 矩阵向量求导一 机器学习
前言: 主要参考https://www.cnblogs.com/pinard/p/10750718.html。 目录 向量概念 求导类型 求导规则一 向量概念 列向量是一个 n×1 的矩阵,即矩阵由一个含有n个元素的列所组成: 列向量的转置是一个行向量 sx: 标量 x: n维向列量 X: m*n矩阵 sy: 标量 y:...
2020-06-23 17:49:23
27
原创 DNN_机器学习
前言: 深度神经网络(Deep Neural Networks, 以下简称DNN),相对BP,增加了隐藏层的层次在CNN相当于全连接层。 参考文档https://www.cnblogs.com/pinard/p/6418668.html这里主要给出代码实现一 代码实现:# -*- coding: utf-8 -*-"""...
2020-04-20 16:20:27
86
原创 BP 算法2_ 机器学习
前言: 这里主要是结合《python机器学习》手写数字识别的例子介绍加L2正规化,BP算法的实现目录 损失函数 CODE 实现 测试效果 一 损失函数 二 CODE 实现# -*- coding: utf-8 -*-"""Created on Thu Mar 12 17:13:34 2020...
2020-03-18 17:33:34
81
原创 BP算法_机器学习
前言: 推荐一个绘图的好网站:https://www.echartsjs.com/examples/zh/index.html#chart-type-scatter目录 参考文档 https://blog.csdn.net/qq_32241189/article/details/80305566 https://blo...
2020-03-01 17:40:39
151
原创 HMM4_机器学习
1、如果概率最大的路径经过篱笆网络的某点,则从开始点到该点的子路径也一定是从开始到该点路径中概率最大的。2、假定第i时刻有k个状态,从开始到i时刻的k个状态有k条最短路径,而最终的最短路径必然经过其中的一条。3、根据上述性质,在计算第i+1状态的最短路径时,只需要考虑从开始到当前的k个状态值的最短路径和当前状态值到第i+1状态值的最短路径即可,如求t=3时的最短路径,等于求t=2时的所有状态结点x2i的最短路径加上t=2到t=3的各节点的最短路径。————————————————版权声明:本
2020-02-20 13:06:05
96
HMM3学习算法_机器学习
前言: 目录 1: 监督学习算法 2: Baum-Welch 算法一 监督学习算法 假设给定训练数据包包含S个长度相同的观测序列和对应的状态序列 ,那么可以利用极大似然估计方法来估计隐马尔可夫模型的参数 1.1 状态转移概率的估计 1.2 观测...
2020-02-18 16:19:41
61
原创 HMM2概率计算问题_机器学习
前言: 这里主要介绍观察序列的前向与后向算法目录:直接计算法 前向算法 后向算法 概率与期望值计算一 直接计算 已知条件: 模型, 观测序列出现的概率: 状态序列的概率 ...
2020-01-19 16:40:10
92
原创 隐马尔可夫模型一_机器学习
前言: 隐马尔可夫模型,是用于标注问题的统计学习模型。描述由影马尔可夫随机生成观测序列的过程,属于生成模型。主要应用在: 语音识别,自然语言处理,生物信息,模式识别。 很久看过, 最近项目正好要用到,从新温习一下。目录: 隐马尔可夫模型定义 观测序列生成 三个基本问题一 隐马尔可夫模型定义 ...
2020-01-09 15:51:16
44
原创 FP-growth 算法- 机器学习
前言: 上面Apiori 频繁集里面,在训练的时候,每次调用ScanD,就需要遍历整个数据集。如果数据集特别庞大,训练的速度会很慢。 FP-growth 是一种速度更快的发现频繁集的算法,完成相同的任务采用不同的算法。 应用: 挖掘常用词,从另一个网民网页浏览行为挖掘常见模式 FP:(Frequent Pattern): 频繁模式...
2020-01-03 15:43:59
40
原创 Apriori 算法关联分析--机器学习
前言: 这种算法在实际应用中还是非常广泛,目标是找到一起出现的物品。比如男生去吃饭,推荐完菜肴后,关联推荐一下对应的酒水。女生去吃饭,推荐一下对应的果汁。也经常用于流量分析,以及医药行业。 算法实际应用中,需要灵活应用。比如某个事件出现的概率极其低,频繁项关联就会关联不到。但是在某个时间点,或者特定事件组合中出现概率极其高。 目...
2019-12-20 17:48:47
67
原创 K-均值聚类算法 机器学习
前言: K-均值聚类是无监督学习,聚类算法中的一种,也比较简单。主要用于视觉图像分类,视频分析,基因分析,自然语言处理文本分析,图像分割等算法(二值化) 主要应用场景,图片聚类,行程安排(一群人安排班车,选择合适的地点,总距离最小)目录 算法流程 后处理提高聚类性能 二分K-均值算法 例子一 算法流程 ...
2019-12-16 17:20:39
51
原创 树回归_机器学习
前言:目录: CART 模型树 树剪枝 GUI 使用一 CART 流程: CreateTree 寻找最佳的切分特征: 如果该节点不能再分,将该节点存为叶节点 执行二元切分 ...
2019-12-12 14:07:37
25
原创 回归1_机器学习
前言 这里主要结合两个例子理解一下线性回归和局部线性加权回归目录 线性回归 局部加权线性回归 例子一 线性回归 优点: 易于理解,计算不复杂 缺点: 对非线性的数据拟合差 适用数据类型: 数值型 函数模型: 为了计算方便 ,扩展一下原来向量...
2019-11-29 14:20:07
24
原创 Boosting 算法
前言: Boosting 是一种集成学习方法,它由多个弱分类器组成(准确率>50%)。预测时,用若分类器分别进行预测,然后投票得到结果。 相对随机森林是样本随机抽样构造的训练集,Boosting 更关注被前面弱分类器错分的样本。 AdaBoost 由Freund等人提出,是Boosting算法的一种实现版本。 最后给出乳腺癌分类的例子目录 ...
2019-11-26 15:23:39
149
原创 SVM求解_SMO 机器学习
前言: SMO 是求解SVM的一种算法(顺序最小化算法)sequential minimal optimization ,由1998年Platt提出。 主要解如下凸二次规划对偶问题: 求解过程中 里面关于二次规划算法收敛性证明,看了很多文档一直没找到。目录: SMO简介 二次规划解析方法 变量...
2019-11-21 16:36:34
79
原创 SVM核函数_机器学习
前言: 有时,分类问题是非线性的。这时候可以用非线性支持向量机,主要特点是核技巧。一 核技巧二 核函数定义三 核技巧在SVM中的应用四 正定核五 常用核函数六 非线性支持向量机一 核技巧 如上左图分离平面是一个椭圆,通过变换变成直线。非线性问题,变成线性可分问题。 设原空间 新...
2019-11-15 16:07:25
100
原创 SVM之软间隔_机器学习
前言 硬间隔,就是存在所有样本必须划分正确的约束条件,即所有样本必须严格满足约束条件: 但样本集中总是存在一些噪音点或者离群点,如果强制要求所有的样本点都满足硬间隔,可能会导致出现过拟合的问题,甚至会使决策边界发生变化,为了避免这个问题的发生,所以在训练过程的模型中,允许部分样本(离群点或者噪音点)不必满足该约束。当然在最大化间隔的同时,不满足约束的样本应尽可能少 为...
2019-11-12 13:50:04
93
原创 SVM硬间隔_机器学习
前言 支持向量机(support vector machine, SVM)是一种二分类模型。是定义在特征空间上的间隔最大化线性分类器,同时还包括核技巧,能解决非线性问题 。 求解过程 主要通过SMO (序列最小最优算法)目录: 线性可分支持向量机 函数间隔几何间隔 间隔最大化 对偶算法 ...
2019-11-08 17:10:56
67
原创 线性模型softmax _ 机器学习
前言: logistic 回归只能应用于二分类问题,softmax 可以处理多分类问题。目录: 预测模型 求解参数 梯度推导过程 例子一 预测模型 为n 维列向量 样本对应的标签,为1-k的整数 输出为K维的概率向量,元素和为1 ...
2019-11-06 16:37:18
47
原创 共轭梯度下降(logistic ) _机器学习
前言: 前面讲过牛顿迭代法,当维度非常高的时候,求解Hessian 矩阵的逆矩阵计算量太复杂。这里介绍一种更简单的求解方法,共轭梯度法目录: 共轭简介 算法流程 参数推导过程 例子一 : 共轭性质 1.1 共轭说明 A是n*n 的对称正定矩阵, 任意两个非零向量,...
2019-11-05 15:12:35
292
原创 线性模型Logistic_ 机器学习
前言 logistic 回归也是一种简单的分类算法。 主要应用在数据挖掘,模式识别领域。例如死亡率预测,广告点击次数预估,疾病诊断。 优点:可解释性强,速度快目录 Logistic 回归 算法推导 算法流程 L2 正规化 应用例子一 Logistic 回归(梯度下降法) 1.1 函...
2019-11-05 11:50:59
42
AndRoid 捕获左右滑动事件
发表于 2017-02-21 最后回复 2017-02-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝