自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(404)
  • 资源 (5)
  • 收藏
  • 关注

原创 霍夫丁不等式

霍夫丁不等式是概率论中的一个基本定理,它描述了独立随机变量的和与其期望值偏差的概率界限。简单来说,它回答了一个这样的问题:当我们用有限样本(例如抽样调查)的平均值来估计真实平均值(总体的期望)时,这个估计的误差到底会有多大?霍夫丁不等式以一种非常清晰和严格的方式,给出了这个误差超过某个特定值的概率上限。

2025-08-26 13:56:05 704

原创 临床医学 RANDOM SURVIVAL FORESTS(randomSurvivalForest)-2 python 例子

随机森林 (RF) 的早期应用侧重于回归和分类问题。随机生存森林(RSF) 的引入是为了将 RF 扩展到右删失生存数据的场景。RSF 的实现遵循与 RF 相同的一般原则:使用引导数据生长生存树;在拆分树节点时使用随机特征选择;树通常生长得很深;通过平均终端节点统计数据 (TNS t) 来计算生存森林集成。生存数据中存在删失是其独有的特征,这使得 RSF 的某些方面比用于回归和分类的 RF 复杂化。在右删失生存数据中,观测数据为T是生存时间和是。代表实际观察到的事件发生时间。

2025-08-08 15:38:40 602

原创 临床医学 RANDOM SURVIVAL FORESTS(randomSurvivalForest)-1

我们引入了随机生存森林(Random Survival Forests),这是一种用于分析右删失生存数据的随机森林方法。本文提出了。

2025-08-06 14:41:27 903 2

原创 临床医学AI LogRank - Test

对数秩检验是一种统计学方法,用于在随机试验中比较两组或多组结果,例如治疗组和对照组。它分析短时间内发生的事件数量,以确定两组之间治愈人数的比例是否存在显著差异。它最有效地检测出一组相对于另一组的治愈人数比例是否较高,但在检测生存期仅延长时,其效果较差。本质上也是卡方检验卡方检验是一种非参数统计检验方法,主要用于分析分类变量之间的关系。它的核心思想是比较实际观测到的频数与在某种假设下期望得到的频数之间的差异。如果这种差异大到一定程度,我们就认为这种差异不太可能是由随机误差造成的,从而拒绝原假设。

2025-08-05 15:44:30 963

原创 临床医学AI 机器学习论文阅读指南

特征列表和降维/选择方法(PCA, LASSO,SelectKBest, 相关系数阈值过滤)?影像(CT/MRI/病理)/EHR/基因组/文本?优化器、学习率、批次大小、正则化(Dropout, L2)、早停策略?作者是否充分讨论(数据量/多样性、泛化性、潜在偏倚、计算成本、缺乏临床验证)?在不同患者子群(年龄、性别、疾病亚型)表现是否一致?快速扫读结论,确认其提炼的核心信息(问题、方法、结果、创新)是否与摘要一致。(处理3D/不平衡数据、多模态融合、注意力机制)(预测、诊断、分割、预后?

2025-08-01 14:27:48 482

原创 ACM SIGCOMM 2024论文精选-01:5G【Prism5G】

挑战:4G/5G中载波聚合(CA)的广泛采用显著提升了终端用户的可实现吞吐量。然而,在存在CA的情况下,尤其是在5G领域,准确建模终端侧的吞吐量性能变得尤为困难。具体挑战包括:(1)异质性:5G信道的多样性及其组合展现出不同特性,且这些信道的可用性和配置可能因地理位置和网络部署而异;(2)复杂性:CA配置中各信道间的复杂交互与相关性增加了模型解释难度;(3)数据稀缺性:测量工作的繁琐性及商业限制导致电信公司难以扩展从商业网络中获取的开源数据集,减少了可用于训练和评估机器学习(ML)模型的数据;(4)

2025-08-01 14:13:13 843

原创 Cox Proportional Hazards Model(PYTHON例子)

Cox PH model 是基于K-M 分析的。Cox比例风险模型(Cox Proportional Hazards Model,简称Cox模型)是生存分析中一种半参数回归模型,由英国统计学家David Cox于1972年提出。它通过建立风险函数与协变量之间的线性关系,分析多个因素对生存时间的影响,同时允许基线风险随时间变化,因此广泛应用于医学、流行病学、工程可靠性等领域。1.风险函数(Hazard Function)的定义里面的参数是通过样本的极大似然估计求解出来的。

2025-07-31 17:11:18 735

原创 机器学习特征选择 explanation and illustration of ANOVA

机器学习里面进行特征选择经常用到 selectKBest,里面的ANOVA计算过程。

2025-07-27 21:34:00 392

原创 生存分析机器学习问题

然而,随着人工智能 (AI) 和机器学习 (ML) 的兴起,科学家现在能够开发更复杂的模型,揭示这些数据集中的模式和特征,从而为癌症的生物学、诊断、预后、治疗和预后提供新的见解。病情更重的患者可能接受更强(或更弱)的治疗,导致治疗方案与不良预后(死亡)强相关。数据集中包含失访或研究结束时仍存活的患者(删失数据),他们的真实生存时间未知,仅知道其存活时间不低于观察到的最后一次随访时间。优先选择参数少、结构简单的模型(如带强正则化的线性模型、简单树模型),避免复杂模型(如深度神经网络)。时刻的状态是未知的。

2025-07-22 17:17:07 909

原创 AI 临床医学课题【总结】

最近参与了几个临床医学课题,总结一下如何跨界结合1: 确定研究的方向: 这个是决定文章的核心研究方向的时候,就要确定要投的期刊,平时看论文的时候要把一些常用的术语记录下来,投的期刊,研究内容,方法记录一下。

2025-07-14 22:45:18 683

原创 深入理解Vapnik-Chervonenkis(VC)维度:机器学习泛化能力的理论基础

在机器学习领域,模型的复杂度与性能之间存在着微妙的平衡,即欠拟合与过拟合的权衡。而过拟合则是模型过于复杂,过度拟合了训练数据中的噪声,虽然在训练数据上表现优异,但在测试数据上表现糟糕。模型的表示能力,即其学习或表示数据复杂模式的能力,是影响模型性能的关键因素。) 量化了一个模型类(例如,所有可能的线性分类器、所有特定深度的决策树)的“拟合能力”或复杂度。总之,在机器学习中,理解欠拟合与过拟合的权衡、模型的表示能力以及VC维等概念,对于选择和优化模型具有重要的指导意义。是衡量算法性能的核心指标。

2025-07-04 10:30:52 898 1

原创 强化学习【chapter1】-基本概念

智能体相对于环境的当前状态。

2025-07-03 17:25:36 737

原创 强化学习【chapter0】-学习路线图

主要总结一下西湖大学赵老师的课程【强化学习的数学原理】课程:从零开始到透彻理解(完结)_哔哩哔哩_bilibili1️⃣基础阶段(Ch1-Ch7):掌握表格型算法,理解TD误差与贝尔曼方程2️⃣进阶阶段(Ch8-Ch9):动手实现DQN/策略梯度,熟悉PyTorch/TensorFlow3️⃣前沿阶段(Ch10: 阅读论文(OpenAI Spinning Up / RLlib文档)Chapter 1:基础概念学习内容:核心术语与问题定义知识点State(状态)、

2025-07-01 15:15:21 635

原创 【Survival Analysis】【机器学习】【3】 SHAP可解釋 AI

SHAP(SHapley Additive explanations) 是一种基于博弈论的可解释工具。现在很多高分的论文里面都会带这种基于SHAP 分析的图,用于评估机器学习模型中特征对预测结果的贡献度.

2025-06-06 16:37:55 1173

原创 NR[ RF - 简介 ]

这种架构尚未被广泛接受,但已在某些手机中应用了数年,并且随着手机技术的发展(例如从GSM/CDMA到UMTS,再从UMTS到LTE),其应用范围也越来越广。上图仅显示了一个方向(接收路径),以便更直观地理解,但大多数通信系统都同时包含接收路径和发射路径,如下图所示。这对于高层次的理解来说已经足够了,但如果您是一位从事这方面工作的射频工程师,您就会了解接收路径和发射路径所用组件之间的许多细微差别。就概念而言,它看起来可能相当简单,因为大多数射频系统都是由非常相似的概念模块组成的,如下所示。

2025-05-28 11:17:18 814

原创 NR 通讯的整体架构

在大多数通信系统中,物理层之上还包含许多其他复杂的层,如下图所示。图中所示的每个模块都需要大量工程师进行研究、开发和测试,而完整的结构构成了一个庞大的产业。并假设发射器发送了一个信号,如左下角所示(蓝色),接收器检测到的信号显示在右侧(红色)。您在图中注意到的第一件事是什么?那就是发送的信号和接收的信号并不完全相同。我们来看下面的例子。这个具体例子中的区别如下。

2025-05-22 10:33:22 295

原创 【Survival Analysis】【机器学习】【3】deepseek流程图

这边是直接把写好的代码放到大模型,然后大模型总结一下,推荐使用deepseek.主要测试:豆包,文言一心,以及Kimi,以及Deepseek,通义千问。下图为deepseek的效果,其它几个都没办法用。提交论文的时候,有的时候需要提供code 的流程图。

2025-05-09 17:15:51 321

原创 【Survival Analysis】【机器学习】【2】

事件(如员工离职)在研究期间内明确发生,且时间点被准确记录。

2025-04-11 11:00:01 1240

原创 【Survival Analysis】【机器学习】【1】

生存曲线(Survival Curves)是生存分析(Survival Analysis)中的核心可视化工具,用于描述特定群体随时间推移的生存(或事件未发生)概率。自己一直是做通讯+AI方向的,这个系列主要参考卡梅隆大学的教程,以及临床医生的角度 了解一下医学领域的相关背景,针对该任务的特殊性,在模型的方向,自己也想到了一个创新的点,目前代码刚刚写完,预计本周会把结果做出来。今年在做的一个博士课题项目,主要是利用病人的数据,训练出一个AI模型,做因果分析,当人是活着的,其生存时间是大于记录的时间。

2025-04-07 09:49:23 1067

原创 【强化学习】【1】【PyTorch】【强化学习简介优化框架】

为帮助学习者系统掌握该领域的核心知识与实践技能,本课程整合西湖大学赵世钰教授权威课程体系、Python代码驱动的实战项目以及模块化知识图谱(ShareNote),构建"理论-算法-实现"三位一体的强化学习教学框架.延伸概念:回合(Episode)、策略(Policy)、回报(Return)、折扣因子。核心三要素:状态(State)、动作(Action)、奖励(Reward)同策略(On-policy) vs 异策略(Off-policy)对比。策略迭代(Policy Iteration)算法。

2025-04-01 14:41:30 958

原创 【PyTorch][chapter-39][MOE][Mixtral of experts -PyTorch】[4]

这里面重点通过PyTorch 实现Transformer MoE的模型部分。

2025-03-24 15:57:25 585 1

原创 【PyTorch][chapter-38][MOE-load balancing】[3]

专家混合模型的基本思想是在深度学习时代之前提出的,可以追溯到 90 年代,当时罗伯特·雅各布斯 (Robert Jacobs) 与“人工智能教父”杰弗里·辛顿 (Geoffrey Hinton) 及其同事提出了“局部专家自适应混合模型”。他们提出了将神经网络划分为多个由门控网络管理的专业“专家”的想法。随着深度学习的兴起,MoE 再次浮出水面。2017 年,Noam Shazeer 及其同事(再次包括 Geoffrey Hinton)提出了用于循环神经语言模型的稀疏门控混合专家层。

2025-03-20 19:24:16 819

原创 【PyTorch][chapter-37][MOE- Mixture of Experts Explained 】[2]

FasterMoE(2022 年 3 月)分析了 MoE 在高效分布式系统中的性能,并分析了不同并行策略的理论极限,以及倾斜专家流行度的技术、减少延迟的细粒度通信调度,以及根据最低延迟选择专家的调整拓扑感知门,从而将速度提高了 17 倍。在微调稀疏 MoE 时要考虑的最后一部分是,它们具有不同的微调超参数设置 - 例如,稀疏模型往往从较小的批量大小和较高的学习率中受益更多。另一个证实泛化问题的观察结果是,该模型在较小的任务中表现较差,但在较大的任务中表现良好。对于局部用例,可能需要使用较小的模型。

2025-03-19 19:20:23 1003

原创 【PyTorch][chapter-36][MOE- Mixture of Experts Explained 】[1]

同时,存在共享计算,例如应用于所有标记的自注意力。模型来扩大这些模型的规模(是的,由于训练 MoE 所需的计算量较低,他们可以将碳足迹减少一个数量级)。条件计算(网络的各个部分基于每个示例而活跃)的理念允许人们在不增加计算量的情况下扩展模型的大小,因此,这导致每个 MoE 层中使用了数千个专家。其中,N 是专家的总数,K 是为每个标记选择的专家数量,si,t 表示专家i对标记t的路由分数,fi 表示被路由到专家i的标记比例,Pi 表示专家i的平均门控分数,而α是一个控制辅助损失强度的超参数。

2025-03-19 09:29:55 1033

原创 【PyTorch][chapter-35][MLA]

它的工作原理是在生成过程中,将已经计算过的键和值向量存储在缓存中,这样在生成后续token时,可以直接从缓存中获取之前token的键和值,而不需要重新计算。具体来说,当生成一个新的token时,模型只需要计算这个新token的查询向量,并与缓存中的键向量计算注意力得分,然后使用这些得分和缓存中的值向量来计算新token的输出表示.在自回归生成过程中,每个新生成的token都会依赖于之前所有token的信息,这就需要在生成每个新token时重新计算整个序列的自注意力。: 注意力头数,每层的注意力头数量。

2025-03-17 09:45:04 1144

原创 【无线通讯Paper】[4] A Low Latency 5G Core Network based on High-Performance NFV Platforms

数据包丢失:在缓冲区分配相同的情况下,3GPP和L25GC的丢失率相似;但在UPF分配更大缓冲区的情况下,L25GC的智能切换可以完全避免数据包丢失。单向延迟:L25GC的智能切换通过优化路径显著降低了从UPF到UE的单向延迟,提升了用户体验。这些结果表明,L25GC的智能切换方法在减少数据包丢失和降低延迟方面优于3GPP的折返路由,特别是在高流量和缓冲区有限的情况下。由于UPF缓冲区大小的增加,UPF没有数据包丢失,而𝐺𝑁𝐵𝑠在3GPP切换中仍然会丢失约800个数据包。

2025-03-12 14:06:14 1024

原创 【PyTorch][chapter-34][transformer-6] RoPE

self-attention 机制首先会将位置信息融 入到词嵌入中,然后将它们转换成查询(queries)、键(keys)和值(values)表示。基于Transformer的语言模型通常利用各个标记(token)的位置信息实现自注意力机制如方程(2)所示,如果不包含位置编码,我们发现计算出来的attention weights是一样的,但这两个。绝对位置变化,通过公式(2) 计算出来attention score 必然是不一样的,这两个句子本质上是一样的,所以我们需要一种相对位置编码。

2025-03-10 11:27:40 1108

原创 【无线通讯Paper】【1】derstanding 5G Performance for Real-world Services:a Content Provider’s Perspective

Rebuffer策略旨在减少或避免流媒体播放过程中的缓冲停顿现象,从而确保用户能够流畅地观看视频内容。通过智能地管理视频数据的下载和缓存,该策略可以在网络条件不佳或视频质量要求较高时,提供更为稳定的播放体验。

2025-02-28 14:27:03 447

原创 【PyTorch][chapter-33][transformer-5] MHA MQA GQA, KV-Cache

主要翻译外网: 解剖Deep Seek 系列,详细见参考部分。其中为子空间头数量一般设置为8在Transformer的Decoder推理过程中,由于自注意力机制需要遍历整个先前输入的序列来计算每个新token的注意力权重,这导致了显著的计算负担。随着序列长度的延伸,计算复杂度急剧上升,不仅增加了延迟,还限制了模型处理长序列的能力。因此,优化Decoder的自注意力机制,减少不必要的计算开销,成为提升Transformer模型推理效率的关键所在。

2025-02-26 19:24:56 1036

原创 【PyTorch][chapter 28][李宏毅深度学习][Diffusion Model-3]

生成模型里面发展: AE-> VAE-> GAN ->WGAN -> Diffusiong本篇我们重点是推导一下Diffusion 模型用的3个公式:下面红色的是用到了VAE重采样的原理。

2025-02-25 13:53:15 807

原创 【无线通讯Paper】[2] Vivisecting Mobility Management in 5G Cellular Networks

随着5G技术对多种无线电频段和不同部署模式(例如独立组网(SA)与非独立组网(NSA))的支持,移动性管理,

2025-02-14 17:21:39 1358

原创 【PyTorch][chapter 29][李宏毅深度学习]Fine-tuning LLM

Fine-tune 常用于小样本学习,适用于特定的任务,比如原始的GPT-3跟矿石一样,通过Fine-tuning 技术可以加工成钻石。

2025-01-26 13:15:34 1537

原创 【无线感知会议系列-21 】无线感知6G 研究愿景

无线感知不仅是利用WIFI 设备进行感知,也是6G的核心功能,本篇主要分享2020奥卢大学芬兰 6G 旗舰项目领导的国际专家小组编写6G 白皮书以及会议本白皮书探讨了第五代 (5G) 无线通信系统未来的定位和传感机遇,确定了关键技术推动因素,讨论了其潜在挑战、实施问题,并确定了潜在解决方案。此外,我们还介绍了定位和传感应用的激动人心的新机遇,这些机遇将颠覆传统的设计原则,彻底改变我们的生活、与环境的互动方式和开展业务的方式。

2025-01-16 12:00:13 986

原创 【无线感知会议系列-21 】无线感知论文如何读

在实际实验中,我们所采集到的数据(以绿色部分示意)首先通过编码器被映射至特征空间,进而实现与目标空间的一对一映射(one-to-one)。然而,在部署阶段,我们时常会遭遇一些全新的数据,这些数据与实验中所采集的数据分布存在显著差异,进而使得模型难以进行有效匹配。在探讨变分自编码器(VAE)原理时,李宏毅教授深刻指出,无论是基于模型的算法,还是基于学习的算法,其本质都在于实现数据空间向目标空间的精准映射。但数据的采集工作高度依赖于实验,而在无线感知领域,如何高效地采集到合适的数据无疑是一个巨大的挑战。

2025-01-13 14:08:16 637

原创 【无线感知会议系列-20】WiFi Sensing with Channel State Information: A Survey-2

前言: 接 上一篇,这里重点讨论5-8,这篇是理解无线感知必看论文之一。相关工作放在附件的资源里面【无线感知会议系列-19 】WiFi Sensing with Channel State Information: A Survey-CSDN博客 目录: 简介 相关工作 信号处理 感知算法 感知应用 挑战和感知趋势 结论 专业名词解释五 感知算法 本节介绍了基于模型和基于学习的

2025-01-03 11:35:38 1181

原创 【无线感知会议系列-19 】WiFi Sensing with Channel State Information: A Survey

为了更深入地了解现有的WiFi感知技术以及未来的WiFi感知趋势,本调查全面回顾了基于CSI的WiFi感知的信号处理技术、算法、应用和性能结果。即采用中心位于时间α的时间窗g(t-α)在时域信号上滑动,在时间窗g(t-α)限定的范围内进行傅里叶变换,这样就使短时傅里叶变换具有了时间和频率的局部化能力,兼顾了时间和频率的分析[1]。最后,本调查提出了三个未来的WiFi感知趋势,即整合跨层网络信息、多设备合作和不同传感器的融合,以增强现有的WiFi感知能力并开启新的WiFi感知机会。

2025-01-03 11:34:30 2340

原创 【PyTorch][chapter 28][李宏毅深度学习][Diffusion Model-2]

本篇主要简单介绍一下State Diffusion. State Diffuison 里面Noise Predictor 模型主要应用了Unet 架构,提供了对应的PyTorch 代码。

2025-01-02 11:42:23 1230

原创 无线感知会议系列【17】Chronos-2

接《Decimeter-Level Localization with a Single WiFi Access Point》目录: CORRECTING FOR PHASE OFFSETS 计算距离和位置 方案 实验结果 相关工作 回顾 结论 DFT IDFT 回顾 五 回顾 PDD 噪声,需要通过线性插值法得到Carrier 0 Carrier 0 不包括该噪声。 CFO PL

2024-12-19 14:27:44 1124

原创 5G Throughput Optimization Basic-2 [Data Scheduling]TBS

1 是4G LTE,我们现在就可以停止了,因为在4G中,传输块(TB)大小的计算相当直接。分割的目的是最小化码块数量,并确保所有码块具有相同的大小。2,在5G中,情况更为复杂,因为5G使用低密度奇偶校验(LDPC)编码器,而不是4G中的Turbo编码器。)对于具备无线通信背景知识的观众而言,假设一个用户设备(UE)已连接到基站,并且基站希望最大化其向用户设备(UE)传输的数据速率。信息比特的数量被称为传输块(TB)大小,本文解释如何从调制编码方案(MCS)和已调度的资源元素数量RE来计算TB大小。

2024-12-19 14:27:03 791

原创 5G Throughput Optimization Basic-1 [Data Scheduling]

在给定的频段或频段组合中,根据TS 38.101-1 [2]的5.3节、TS 38.101-2 [3]的5.3节和TS 38.101-5 [34]的5.3节的定义,这是数值表示法μ下带宽B内的最大资源块(RB)分配量,其中B_UE_max表示UE在该频段或频段组合中支持的最大带宽。这是下行链路中由 supportedModulationOrderDL 给出的最大支持调制阶数,以及上行链路中由 supportedModulationOrderUL 给出的最大支持调制阶数。2.2 参数说明。

2024-12-19 14:26:13 1012

PyTorch[chapter-33][transformer-6] RoPE

PyTorch[chapter-33][transformer-6] RoPE

2025-03-05

无标题WiFi Sensing with Channel State Information: A Survey-2

无线感知

2025-01-03

Inversion about Mobius

Inversion about Mobius

2024-05-10

Wasserstein GAN and the Kantorovich-Rubinstein Duality - Vincent

WGAN 理论证明

2024-03-08

python 机器学习手写数字数据集

python 机器学习手写数字数据集 trainData trainLabel testData testLabel

2020-03-18

决策树3种算法,以及原理

C4.5, ID3, CART 代码,以及算法讲解 数据集里面没有,自己设计一下

2018-07-31

凸优化讲解PPT

文档类 主要讲了一些基本数学的原理, 以及实现的过程

2018-07-31

数学知识-最优化方法 .docx

机器学习与应用阅读笔记-- 数学知识 最优化方法

2019-08-11

约会系统,手写数字分类系统 数据集以及CODE

约会系统,手写数字分类系统 数据集以及CODE

2019-08-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除