自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(354)
  • 资源 (5)
  • 收藏
  • 关注

原创 无线感知会议系列【13】A Survey on BehaviouA Doppler-Based Human Activity Recognition System Using WiFi Signals

这个最早在IEEE Sensors 看到这篇论文解读.摘要:无需设备的被动室内定位技术在许多应用中发挥着至关重要的作用,如老年人护理、入侵检测、智能家居等。然而,现有的无需设备的定位系统要么需要繁琐的离线训练,要么需要专用的特殊设备。

2024-10-30 16:32:47 700

原创 无线感知会议系列【12】A Survey on Behaviour Recognition Using WiFiChannel State Information

摘要 本文综述了利用商用WiFi系统的信道状态信息(CSI)在室内区域进行被动人体行为识别的最新进展。人体移动会导致无线信号反射发生变化,进而引起CSI的波动。通过分析不同活动对应的CSI数据流,并将其与已存储的模型进行对比,可以识别出人体行为。这一过程通过从CSI数据流中提取特征,并应用机器学习技术构建模型和分类器来实现。尽管文献中提出的这些技术表现出色。 但本文建议采用深度学习技术,如长短时记忆(LSTM)循环神经网络(RNN),并展示了其性能的提升。此外,我们

2024-10-25 15:12:57 550

原创 无线感知会议系列【11】Understanding and Modeling of Wifi Signal Based Human Activity Recognition-2

前言: 接CSDN《Understanding and Modeling of WiFi Signal Based Human Activity Recognition》 南京大学和密歇根州立大学 的一篇Paper重点了解CSI-Speed Model :we see that the CFR power is a linear combinationof all the reflected paths and the speeds of path l

2024-10-23 15:20:15 655

原创 【PyTorch][chapter31][transformer-4]

Representation Collapse指的是模型学习到的特征表示变得过于简单或退化,失去了对输入数据的有效区分能力。在极端情况下,所有输入都被映射到同一个点或非常相似的几个点上,导致模型无法区分不同的输入数据。

2024-10-22 20:14:21 757

原创 【PyTorch][chapter30][transformer-3]

最近要结合Transformer 做一个项目预言, 这篇主要结合现有的网上Transformer 三种不同的代码结构,总结一下。

2024-10-18 09:31:15 1113

原创 无线感知会议系列【10】Understanding and Modeling of Wifi Signal Based Human Activity Recognition-1

这是2023 国内感知论文一篇报告:原文是发表在MobiCom 上的一篇论文,视频链接参考文章最后的链接。Presented at the 21st ACM International Conference on Mobile Computing and Networking (MobiCom 2015) 论文《Understanding and Modeling of Wifi Signal Based Human Activity Recognition》 作者: 南京大学新型软件技术国家重点实

2024-10-17 14:20:28 974

原创 无线感知会议系列【8】FingerDraw 基于WiFi的手指移动轨迹追踪检测-Ubicomp2020论文分享-2

摘要: 接 《无线感知会议系列【7】FingerDraw 基于WiFi的手指移动轨迹追踪检测-Ubicomp2020论文分享-1》无线感知会议系列【7】FingerDraw 基于WiFi的手指移动轨迹追踪检测-Ubicomp2020论文分享-1-CSDN博客感知手指绘图项 目流程图如下:无线感知的基本原理可以通过两个公式: 1: 反射物体如何影响到CSI信号2 相位变化跟感知对象位移大小的关系目录:理解手指绘画的CSI的变化

2024-10-15 14:47:58 685

原创 无线感知会议系列【7】FingerDraw 基于WiFi的手指移动轨迹追踪检测-Ubicomp2020论文分享-1

摘要这篇论文是发表在 Proc. ACM Interact. Mob. WearableTechnol., Vol. 4, No. 1, Article 31. Publication date: March 2020,主要研究的方向是手指手势识别论文名称:《Subwavelength-Level Finger Motion Tracking with Commodity WiFi Signals》

2024-10-10 16:18:27 1093

原创 无线感知会议系列【6】【Walking Direction Estimation Using Wireless Signals】

参考2016 Ubicomp《WiDir: Walking Direction Estimation Using Wireless Signals》原理:1 不同的子载波对应两个共心的椭圆,反射物体会依次穿越,根据穿越的方向得到向内,向外(Frenel Direction)2 两个子载波固定下后,向外走反射路径变大,相位差变大,向内走,相位差减少。3 采样分帧评估相位差,如果窗口大小太小,无法覆盖整个时段,则无法可靠估计延迟估计的平均值。

2024-10-04 21:56:27 934

原创 无线感知会议系列【5】 无线感知边界-1

无线感知边界是整个ISAC 里面一个研究的难点和重点。本篇主要来源于2022 《WiFi感知边界研究-Ubicomp2022论文分享》感知的相关论文组会2016年无线感知研究主要是国内高校主导,各种无线感知论坛2021年无线感知 VIVO,OPPO ,华为,国内高校 等发起了ISAC 会议,主要侧重技术落地,3GPP标准研究,Demon 演示,黄大年茶思屋有过相关的topicCNCC 会议。

2024-09-28 20:18:06 666

原创 无线感知会议系列【4】【基于WiFi和4G/5G的非接触无线感知:挑战、理论和应用-2】

本篇重点分享一下该论文接 2020年北京智源大会 张大庆老师的一个报告。

2024-09-23 15:17:15 1025

原创 无线感知会议系列【3】【基于WiFi和4G/5G的非接触无线感知:挑战、理论和应用-1】

大部分感知是通过分类算法来识别人的行为模式,但是人的行为模式是否跟信号模式有一一对应的映射关系. 因果性?caseA, caseB : 手指A 在不同的位置,做同样的动作,但是CSI 幅度谱是不一样的。如上图 ,CSI 信号是由LOS 路径上的信号(红色)+ 反射路径上的信号。一般通过公式去解释,电磁波在LOS路径长度传播的距离和反射路径传播的距离不同,物体的运动引起了接收信号的变化,接收的信号跟感知的对象的运动有映射关系.1 运动相同的距离但是不同方向,产生了不同的幅度谱。

2024-09-19 11:35:22 1221

原创 无线感知会议系列【2】【智能无感感知 特征,算法,数据集】

SpotFi是一种利用商用WiFi芯片已暴露的信息进行高精度室内定位的系统。它不需要对WiFi硬件或固件进行任何修改,即可实现与最先进定位系统相同的定位精度。SpotFi通过结合超分辨率算法和新颖的滤波及估计技术,能够准确计算多径分量的到达角(AoA)并识别出目标与接入点(AP)之间的直接路径。该论文提出了一种基于多维性的被动室内Wi-Fi追踪技术(mD-Track),该技术利用无线信号在人体上的反射来获取目标的位置和移动轨迹。系统组成:使用一个无线信号发射器和一个无线信号接收器。

2024-09-12 09:57:18 873 1

原创 无线感知会议系列【1】【增强无线感知应用的鲁棒性】

技术目标:通过识别、跟踪和减轻数据漂移来应对环境变化对无线感知性能的影响。核心方法概率评估:利用分类过程中产生的概率分布来评估预测的可信度。统计评估:基于共型预测理论(Conformal Prediction Theory)来量化测试样本和训练样本的奇异性,从而评估预测的可信度。异常检测:将概率和统计评估结果结合,输入到SVM异常检测器中,根据评估结果接受或拒绝感知结果。

2024-09-10 19:20:49 672

原创 【PyTorch][chapter 29][李宏毅深度学习][transformer-3] 使用PyTorch构建 Transformer

它由多头自注意力机制、多头交叉注意力机制(关注编码器的输出)、位置前馈神经网络以及相应的残差连接、层规范化和 dropout 层组成。与编码器一样,多个解码器层通常堆叠在一起以形成 Transformer 模型的完整解码器部分。验证损失可以指示您的模型在看不见的数据上的表现如何,这是衡量模型泛化能力的关键指标。此设置可以是更大脚本的一部分,其中模型在实际的序列到序列任务(例如机器翻译或文本摘要)上进行训练和评估。接下来,将编码器和解码器模块组合在一起,构建完整的Transformer模型。

2024-09-05 14:33:53 1444

原创 【PyTorch][chapter 27][李宏毅深度学习][transformer-2]

在NLP中,文本一般是不定长的,所以在进行 batch训练之前,要先进行长度的统一,过长的句子可以通过truncating 截断到固定的长度,过短的句子可以通过 padding 增加到固定的长度,但是 padding 对应的字符只是为了统一长度,并没有实际的价值,因此希望在之后的计算中屏蔽它们,这时候就需要 Mask。信息的糅合性比较好。总的来说,归置偏纳是卷积神经网络中一个重要的概念,它通过利用特征的局部性和关联性,帮助网络更有效地学习和识别数据中的模式,从而提高模型的性能和准确性‌。

2024-09-04 17:45:13 783

原创 【PyTorch][chapter 27][李宏毅深度学习][transformer-1]

Batch Nomralization 切出来的样本如下:样本长度变化较大的时候,算出来的均值和方差变化较大。相对RNN, LSTM ,transformer 可以并行计算,本篇重点介绍transformer 的Encoder 架构以及实现.3.2.2 当序列特别长的时候,前面的信息会丢失。全称神经信息处理系统大会), 是一种seq2seq 的模型.采用的Encoder-Decoder 结构,应用比较广泛。3.1: 现有技术:在seq2seq 里面常用的是 LSTM, RNN,GRU,CNN.

2024-08-28 17:14:56 783

原创 【无线感知】【P8】WIFI 感知实战-3【PyTorch】

然而,总是佩戴设备很麻烦,而且对于许多被动活动识别来说可能是不可能的,应用程序,其中人可能不携带任何传感器或无线设备。虽然可以使用基于摄像头的系统,对于被动活动识别,视线 (LOS) 要求是此类系统的主要限制。因此,被动,基于无线信号的监控系统,不侵犯人们的隐私,是人们所希望的。此类系统由 WiFi 接入点 (AP) 和位于不同地点的一台或多台支持 WiFi 的设备环境的。无线感知数据预处理是核心,跟图像和音频不一样,其幅度和相位变化有对应的物理意义以及数学模型,有很多方案进行预处理。

2024-08-02 09:51:30 1068 2

原创 【PyTorch][chapter 27][李宏毅深度学习][attention-3]

如上图,一张R,G,B 图片,输入 shape [batch, input_channel=3, height=5,width=3]输入 shape[batch, seq_len=width*height=10*5, input_dim= channel=3]self-attention,依次对每个通道的图片做Q,K,V,然后计算出attention-score.Q,K,V 总共需要 seq_len* [input_dim, hidden_dim]*3 内存大小。2 1s 对应100帧,100个向量。

2024-07-29 13:41:17 879

原创 【无线感知】【P7】WIFI 感知实战2- 数据集处理

slide_size = 200 (滑动窗口,帧与帧之间存在overlap,less than window_size!1: 先通过 csv_import 提取训练input,label 到txt(只运行一次,大概18分钟)运行 cross_vali_data_convert_merge.py .先通过csv_import 提取Input, label 到txt(18分钟)每次训练的时候,通过csv_import()方法加载数据集,这样可以专注模型优化。,加载训练的数据集以及标签(2分钟)

2024-07-24 15:08:31 1013

原创 【无线感知】【P6】无线感知手势识别- WIFI 感知实战

这里面主要感知行为分为下面7种。

2024-07-22 15:22:27 669

原创 【PyTorch][chapter 26][李宏毅深度学习][attention-2]

通过将输入向量投影到不同的子空间,每个子空间执行自注意力操作,这样模型能够并行地学习不同类型的特征或依赖关系,增强了模型的表达能力。Self-Attention(自注意力机制):使输入序列中的每个元素能够关注并加权整个序列中的其他元素,生成新的输出表示,不依赖外部信息或历史状态。print(attention_weights.shape) # 输出: torch.Size([10, 4, 8, 8])print(output.shape) # 输出: torch.Size([10, 8, 64])

2024-07-18 14:54:27 640

原创 【无线感知】【P5】无线感知手势识别- WIFI 感知边界基于wifi信号和雷达信号处理技术的室内多场景跌倒检测

人体反射信号,实部和虚部都符合正态分布,为瑞利分布(瑞利分布是最常见的用于描述平坦衰落信号接收包络或独立多径分量接收包络统计时变特性的一种。这个目前的主要研究方向: 也是基于Fresnel 去研究的,以及罗西尼卵形线。同样的动作,对应的CSI 幅度谱差异非常大,环境影响特别大。但是由于噪声影响,正常有个幅度和相位的变化,如果噪声不大的话,当收发信号通过墙体,人的发射信号会有明显的差异,如何刻画反射信号。期望的发送信号和接受信号是一样的,H是1。可以认为H也是一个恒定的值, 幅度和相位固定的.

2024-07-17 17:54:33 846

原创 【PyTorch][chapter 26][李宏毅深度学习][attention-1]

向量的个数定义Windows窗口.如果窗口特别大,计算量特别大。attention 是通过self-attention 来计算,比如要计算。模型: N个全连接网络,每个全连接网络,输入N个向量.:值向量,表示要根据查询向量和键向量的匹配程度来加权求和的信息。同理依次算出来跟其它向量之间的相似度。attention 要解决的是输入的向量长度不定.: 键向量,表示要与查询向量进行匹配或比较的源。是当前向量无法获得其他向量的信息。输入N个向量,输出N个向量,这是本章的重点。输入N个向量, 输出M个向量。

2024-07-09 21:30:34 1014

原创 [TensorFlow-Lite][深度学习]【快速简介-1】

很多场景下面我们需要需要把我们的深度学习模型部署到Android,IOS 手机上面.android& IOS, MCU, TPU. 目前全球有40亿台设备支持TFLite。可以通过迁移学习,即使不懂ML,也可以快速的部署自己的模型.很多场景下面: 无网络,数据无法传到服务器侧进行推理。3:很多场景下面:网络延迟,无法在服务器侧进行实时推理。4: 当把数据传递到往网络侧推理,会导致终端功耗增加.2:很多场景下面:带宽很低,传递到服务器推理效率低。对应的JAVA 代码,但是没有找到对应的入口。

2024-07-05 17:18:40 436 1

原创 【无线感知】【P4】无线感知手势识别- WIFI 感知边界

LTE网络中的SNR(Signal-to-Noise Ratio)是衡量信号质量的指标,其单位为dB。SNR的取值范围通常在0dB到40dB之间,其中0dB表示信号质量非常差,而40dB表示信号质量非常好。对感知边界所围成的区域进行积分,可以得到感知范围的面积,感知范围岁面积随着LOS变化的规律。0dB ≤ SNR ≤ 10dB:信号质量一般,适用于低速数据传输和低质量的语音通话。从一个小的卵形到一个大的卵形,再到2个卵形。红色代表感知质量好,收发距离近的时候是一个卵形,距离远的时候为两个卵形.

2024-06-21 14:32:54 948

原创 【无线感知】【P3】无线感知手势识别-Ubicomp2022论文分享

有3个1组成.但是在不同方位穿过的Fresnel边界不同. 图中C方向, 沿着切线方向切割数量几乎为0,对应CSI幅度谱信号特征几乎为0。D 动态分量: 手势信号G: 由反射路径上的手势活动引起的。同样一个1 在不同位置带来的CSI信号特征完全不一样,有的位置就不能用于识别。有的位置不能用于识别感知的.如下图,同样的G幅度,同样的噪声, 手势运动相位差小的,对应的EDP越差.在复平面里面, 我们手势信号G 对应的信号为图中绿线。跟EDP 把信号分为可用不可用的信号,对于不可用信号直接丢弃。

2024-06-13 17:11:01 729

原创 [移动通讯]【无线感知-P2】[特征,算法,数据集】

OFDM便是多载波调制的特例,其使用数个正交载波调制信号,在每个子载波间不需要有保护间隔,大大的增加了带宽使用效率,且使OFDM更有位分配的概念,即通道环境好的子载波就加大该载波的power或提高调制等级(ex:BPSK->QAM),位分配使得OFDM带宽使用效率更加高。AOA 定位一般是基于相位差的方式计算出到达角度,一般不单独使用,由于 AOA 涉及到角度分辨率的问题,若单纯 AoA 定位, 若离基站越远,定位精度就越差。随着机器学习,深度学习的发展,很多深度学习的模型应用于无线感知,效果较好。

2024-06-05 11:42:57 1668

原创 [移动通讯]【无线感知-P2】从RSSI到CSI

x: Tx 发送的symbols,收发双方在发生的时候按照约束[n,1]的向量,已知值。在发送的数据帧中间插入,26 bit的training bits,在一个周期内我们可以认为H是一个。我们考虑一个更长的周期,因为每次收到的y 都不一样,则每个time。对应的H也不一样,对应于下图。(二) RSSI 测量的是信号多径传播的叠加效果,并不能逐一区分多条信号传播路径。bit 的time 间隔小一点,有的时候也称为sample time 应该短一点。MIMO的原理我前面的博客有详细的讲解过,可以参考一下。

2024-05-22 17:05:53 869

原创 [移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-3][Mobius transformations-7】【Inversion】

Inversion在 non-Euclidean geometry transformations 中起着一个核心的作用.College) Michael P. Hitchman. 有篇文章大概128页的PDF,有详细的介绍的各种原理,以及案例。放在附件的资源绑定里面,如果需要深入的理解可以花1-2个月的时间详细的看一下该文档。mobius map 里面比较难的是inversion ,林菲尔德学院(本文只是截取开头部分,详细内充参考资源绑定部分。假设C为圆:半径为r,圆心为。

2024-05-10 15:20:57 355

原创 [移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-5]【The Riemann Mapping Theorem】

黎曼映射(The Riemann Mapping)定理是复分析最深刻的定理之一,也是复变函数几何理论最基本、最重要的定理. 黎曼映射是 Mobius变换 的核心定义之一。单连通域是直观上没有洞的平面区域的推广,即区域内任何一条简单闭曲线的内部没有不属于D的点。映射到一个无噪声的域中,在无噪声的环境中分析模型,然后通过Mobius 反演,平移,膨胀。了解另一个区域的类似流体流动,将这个流从上半平面映射到,使用黎曼映射的期望区域。被限制在第一象限内.则经过mobius 变化后对应为一个半圆.

2024-04-29 11:29:32 1140

原创 [移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-3][Mobius transformations-4]

前面我们理解了Mobius transformation 的定义以及一些基本性质,最重要的是了解其confromal map ,以及 inversion 反演的一些特性.本节 依然结合 Petra Bonfert-Taylor 的《Möbius transformatios》深入了解一下Mobius transformations,下一节我们重点学习一下《The Riemann Mapping Theorem》黎曼映射定理。

2024-04-25 17:22:09 379

原创 [移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-3][Mobius transformations-3]

做旋转,膨胀,平移等操作(rotation dilation translation)如果分子分母同乘以一个constant k我们发现结果不变,所以对于给定的变换f(z)1.1 f(z) 是非常数(non-constant )相当于对原图像做旋转和膨胀(rotation&dilation)先求导,导数不为0,所以f(z)不能是常数。设圆通过mobius 变换后的图像是什么呢?是半径为1的圆,中心点在1,那么f(k)是什么?,因为导数不为0 ,所以f(z)也不能为常数。设 c= 0,d=1, 则。

2024-04-22 19:41:51 967

原创 [移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-3][Mobius transformations-1]

本文结合Mobius变换来解释该原理.通过该课程最终深入的理解Mobius map 本质上是 tranlation+Reflection+Rotation+Enlargement| Enlargement/Shrinking的组合,特别是Mobius变换后形状不变所以用来做轨迹的分析.tranlation+Reflection+Rotation+Enlargement| Enlargement/Shrinking ,通过变换依然保留了原空间的形状,原来是圆依然是圆。3.2 Rotation (旋转)

2024-04-22 11:54:45 950

原创 [移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-2]

发射机和接收机的采样频率由于时钟不同步而出现偏移,这可能导致ADC后的接收信号相对于发射信号发生时移。数据包检测引入了另一个相对于传输信号的时移[13,ref21],这导致了数据包变化的相位旋转误差。传输对的中心频率不可能完全同步。由于硬件分辨率的限制,例如Atheros 9380的分辨率为0.5dB, LNA和PGA获得的总增益无法完美地补偿信号幅度衰减使其达到发射功率的水平。由于商品WiFi设备网卡的硬件缺陷,内部信号处理电路的频率响应与基带中的真实信道频率响应混合,也就是说获得的CSI测量。

2024-04-17 08:47:10 1184

原创 [移动通讯]【无线感知-P1】[从菲涅尔区模型到CSI模型-1]

6G 技术的发展,智能感知是其核心功能. 卫星通讯80年代摩托罗拉已经能做到了.但是通过电磁波进行智能感知依然是一个很前沿的方向,早期以MIT,华盛顿大学为代表在这个领域做了大量基础的开拓性研究,2015年的时候有爱立信的前同事跟我分享过他们的6G预言项目,也是做这块研究的,当时觉得挺神奇的。今年因为工作关系成了CCF会员,看到国内不少大学在做这个方向的基础研究,决定找些资料深入研究一下底层的基础原理,算法,应用,缺陷。也欢迎小伙伴留言进行探讨.

2024-04-11 15:28:16 1350

原创 【PyTorch][chapter 25][李宏毅深度学习][Transfer Learning-1]

TaskB: 通过语音识别中英文. 我们很容易获得大量 Source Data,,我们是否可以先 训练一个模型B,实现中英文文语音识别. 然后再通过模型B 的参数去实现 Task A呢?固定Model 1,构建Model 2,把task2 的数据集输入Model 1,其每一层的输出添加进Model2 的输入层, 训练Model 2。输入一段语音,使用相同的Encoder,不同的Decoder来训练多任务,实现中文,法文,日文,英文文字识别任务。多任务使用一个模型实现多任务的预测。

2024-04-08 15:16:16 1080

原创 【PyTorch][chapter 25][李宏毅深度学习][ CycleGAN]【实战】

参数配置是通过argparse 实现的,这样通过google colab 调试的时候。文件目录:options\train_options.py。CycleGAN 是先训练生成器G, 再训练鉴别器D。论文中直接提供了GitHub 的代码下载地址。GAN 模型是先训练鉴别器D, 再训练生成器G。主要定义了生成器,鉴别器的网络结构。6: 训练和测试代码。4: network代码。define_G 生成器。define_D 鉴别器。可以动态的设置超参数进行训练。network.py中实现。

2024-04-02 15:09:06 841 1

原创 【PyTorch][chapter 24][李宏毅深度学习][ CycleGAN]【理论】

图像到图像的转换是一类视觉和图形问题,其目标是使用对齐图像对的训练集来学习输入图像和输出图像之间的映射(Pix2Pix)。生成的图像原则上是无法区分的来自真实照片.在图像生成任务中,adversarial loss 作用特别强大 .cycleGAN 也采用了的对抗性损失,使得翻译后的图像无法与目标中的图像区分开。CycleGAN的创新点在于能够在源域和目标域之间,无须建立训练数据间一对一的映射,就可以实现这种迁移,更重要的是生成新的图片和原始图片是一种有意义的配对.在有些场景下这种差距很难或者不可能接近。

2024-03-25 16:33:27 1284

原创 【PyTorch][chapter 22][李宏毅深度学习][ WGAN]【实战三】

原因是判别器是一个多层网络,如果我们把clipping threshold设得稍微小了一点,每经过一层网络,梯度就变小一点点,多层之后就会指数衰减;反之,如果设得稍微大了一点,每经过一层网络,梯度变大一点点,多层之后就会指数爆炸。只有设得不大不小,才能让生成器获得恰到好处的回传梯度,然而在实际应用中这个平衡区域可能很狭窄,就会给调参工作带来麻烦。我们知道WGAN 是根据Wasserstein Distance 推导出来的。WGAN 训练起来蛮麻烦的,如果要获得好的效果很多超参数需要手动设置。

2024-03-19 15:07:37 940

Inversion about Mobius

Inversion about Mobius

2024-05-10

Wasserstein GAN and the Kantorovich-Rubinstein Duality - Vincent

WGAN 理论证明

2024-03-08

python 机器学习手写数字数据集

python 机器学习手写数字数据集 trainData trainLabel testData testLabel

2020-03-18

约会系统,手写数字分类系统 数据集以及CODE

约会系统,手写数字分类系统 数据集以及CODE

2019-08-16

数学知识-最优化方法 .docx

机器学习与应用阅读笔记-- 数学知识 最优化方法

2019-08-11

凸优化讲解PPT

文档类 主要讲了一些基本数学的原理, 以及实现的过程

2018-07-31

决策树3种算法,以及原理

C4.5, ID3, CART 代码,以及算法讲解 数据集里面没有,自己设计一下

2018-07-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除