33. Search in Rotated Sorted Array

Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
Your algorithm’s runtime complexity must be in the order of O(log n).
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
给定一个旋转后的排序数组,找出给定数字在数组中的位置。
要求时间复杂度logn。
思路:
二分法
如图
两种情况:红线和绿线
用二分法求解的时候,会出现如图mid的两种情况的位置,对比nums[start]分mid在x轴上方和在x轴下方两种情况讨论。

class Solution {
    public int search(int[] nums, int target) {
        if(nums == null || nums.length == 0) return  -1;

        int start = 0, end = nums.length -1 ;
        while (start + 1 < end){
            int mid = start + (end - start)/2 ;
            if(nums[mid] == target) return mid;

            if(nums[start] < nums[mid]){ //引入nums[start]分mid在x轴上和在x轴下两种情况讨论
                //situation 1  红线
                if(nums[mid]> target && nums[start] <= target ){
                    end = mid;
                }else{
                    start= mid;
                }
            }
            else{
                //situation 2 绿线 ,nums[start] >= nums[mid]
                if(nums[mid] <= target && nums[end] >= target){
                    start = mid;
                }else{
                    end =mid;
                }
            }
        }//while

        //double check 
        if (nums[start] == target ) return start;
        if (nums[end]== target) return end;
        return -1;
    }
}
在Python中,并没有一个内建函数或方法叫做`.minimum_rotated_rectangle`。不过,如果你是在图像处理或计算机视觉的上下文中提到这个术语,可能是你在使用某个库或框架时接触到的函数或方法,它用于计算并返回最小旋转矩形。 在OpenCV库中,可以使用`minAreaRect()`函数来找到给定点集的最小旋转矩形。这个函数返回一个`RotatedRect`对象,包含了旋转矩形的中心点、宽度、高度以及旋转角度。最小旋转矩形是能够覆盖所有点且面积最小的矩形。 以下是一个使用OpenCV实现最小旋转矩形的例子: ```python import cv2 import numpy as np # 假设points是一个二维点集,例如 [[x1, y1], [x2, y2], ..., [xn, yn]] points = np.array([[10, 10], [10, 30], [30, 30], [30, 10]], dtype=np.float32) # 使用minAreaRect函数计算最小旋转矩形 rect = cv2.minAreaRect(points) # 输出旋转矩形的中心点、尺寸和旋转角度 print("旋转矩形的中心点:", rect[0]) print("旋转矩形的尺寸:", rect[1]) print("旋转矩形的角度:", rect[2]) # 绘制旋转矩形 box = cv2.boxPoints(rect) box = np.int0(box) cv2.drawContours(image, [box], 0, (0, 255, 0), 2) ``` 在这段代码中,首先创建了一个点集`points`,然后使用`minAreaRect()`函数计算出最小旋转矩形。`rect[0]`是旋转矩形的中心,`rect[1]`是旋转矩形的尺寸(宽度和高度),`rect[2]`是旋转矩形的角度。最后,使用`boxPoints()`函数和`drawContours()`函数将旋转矩形绘制到图像上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值