Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
Your algorithm’s runtime complexity must be in the order of O(log n).
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
给定一个旋转后的排序数组,找出给定数字在数组中的位置。
要求时间复杂度logn。
思路:
二分法
如图
用二分法求解的时候,会出现如图mid的两种情况的位置,对比nums[start]分mid在x轴上方和在x轴下方两种情况讨论。
class Solution {
public int search(int[] nums, int target) {
if(nums == null || nums.length == 0) return -1;
int start = 0, end = nums.length -1 ;
while (start + 1 < end){
int mid = start + (end - start)/2 ;
if(nums[mid] == target) return mid;
if(nums[start] < nums[mid]){ //引入nums[start]分mid在x轴上和在x轴下两种情况讨论
//situation 1 红线
if(nums[mid]> target && nums[start] <= target ){
end = mid;
}else{
start= mid;
}
}
else{
//situation 2 绿线 ,nums[start] >= nums[mid]
if(nums[mid] <= target && nums[end] >= target){
start = mid;
}else{
end =mid;
}
}
}//while
//double check
if (nums[start] == target ) return start;
if (nums[end]== target) return end;
return -1;
}
}