编程之美2.6——精确表达浮点数

问题:

用分数形式来表示小数,以达到精确的计算结果。

 

解答一:

用于小整数,将无限循环小数0.a1a2...an(b1b2...bm)分为非循环部分和循环部分。

X=((a1a2...an)*(10^m-1)+b1b2...bm)/((10^m-1)*10^n)

#include <iostream>

using namespace std;

long long gcd(long long a, long long b)
{
	if (a < b)
	{
		long long tmp = a;
		a = b;
		b = tmp;
	}
	int i, k=0;
	while (b!=0)
	{
		if ((a&1) == 0)
		{
			if ((b&1) == 0)
			{
				// a,b均是偶数,f(a,b)=2*f(a>>1,b>>1)
				a >>= 1;
				b >>= 1;
				k++;
			}
			else
				// a为偶数,b为奇数,f(a,b)=f(a>>1,b)
				a >>= 1;
		}
		else
		{
			if ((b&1) == 0)
				// a为奇数,b为偶数,f(a,b)=f(a,b>>1)
				b >>= 1;
			else
				// a,b均是奇数,f(a,b)=f(a-b,b)
				a = a-b;
		}
		if (a < b)
		{
			long long tmp = a;
			a = b;
			b = tmp;
		}
	}
	return a << k;
}

int main()
{
	long long a=0, b=0, c=0;
	// 整数部分c,非循环小数a,循环小数b
	scanf("%d.%d(%d)",&c, &a, &b);
	if (a==0 && b==0)
		cout << c;
	else
	{
		// 分子up,分母down
		long long up = c;
		long long down = 1;
		long long ta = a;
		while (ta)
		{
			down *= 10;
			ta /= 10;
		}
		up = c*down+a;
		if (b!=0)
		{
			long long wb = 1;
			long long tb = b;
			while (tb)
			{
				wb *= 10;
				tb /= 10;
			}
			up = up*(wb-1)+b;
			down = down*(wb-1);
		}
		long long fac = gcd(up, down);
		cout << up/fac << "/" << down/fac << endl;
	}
}


 

解答二:

用于大整数,定义了大整数类型,以及对应的加减乘除、比较移位运算。

 

#include <iostream>
#include <cstring>
#include <string>
using namespace std;

// 大整数类型
#define MAXLEN 1000
struct HP {int len, s[MAXLEN];};

void PrintHP(HP x) 
{
	for (int i=x.len; i>=1; i--)
		cout << x.s[i];
}

// 字符串转大整数
void Str2HP(const char *s, HP &x)
{
	x.len = strlen(s);
	for (int i=1; i<=x.len; i++)
		x.s[i] = s[x.len-i] - '0';
	if (x.len == 0)
	{
		x.len = 1;
		x.s[1] = 0;
	}
}

// 大整数的加法
void Plus(const HP a, const HP b, HP &c)
{
	int i; c.s[1] = 0;
	// 大整数a,b的加法操作和结果c的进位操作
	for (i=1; i<=a.len || i<=b.len || c.s[i]; i++)
	{
		if (i <= a.len) c.s[i] += a.s[i];
		if (i <= b.len) c.s[i] += b.s[i];
		c.s[i+1] = c.s[i]/10; c.s[i] %= 10;
	}
	// 退出循环到原因是c.s[i]==0,所以取前一位
	c.len = i-1; 
	if (c.len == 0) c.len = 1;
}

// 大整数的减法
void Subtract(const HP a, const HP b, HP &c)
{
	int i, j;
	for (i=1,j=0; i<=a.len; i++)
	{
		// j表示是否要对高位进行借位
		c.s[i] = a.s[i] - j;
		if (i <= b.len) c.s[i] -= b.s[i];
		if (c.s[i] < 0) 
		{
			// 向高位借位,补10
			j = 1;
			c.s[i] += 10;
		}
		else j = 0;
	}
	c.len = a.len;
	while (c.len > 1 && !c.s[c.len]) c.len--;
}

// 大整数的比较
int HPCompare(const HP &x, const HP &y)
{
	if (x.len > y.len) return 1;
	if (x.len < y.len) return -1;
	int i = x.len;
	while (i>1 && (x.s[i]==y.s[i])) i--;
	return x.s[i] - y.s[i];
}

// 大整数的乘法
void Multi(const HP a, const HP b, HP &c)
{
	int i, j;
	// 对乘法结果赋初值,以方便之后的+=运算
	c.len = a.len + b.len;
	for (i=1; i<=c.len; i++) c.s[i] = 0;
	for (i=1; i<=a.len; i++)
		for (j=1; j<=b.len; j++)
			c.s[i+j-1] += a.s[i]*b.s[j];
	// 运算结果进位
	for (i=1; i<c.len; i++) {c.s[i+1] += c.s[i]/10; c.s[i] %= 10;}
	// 最高位继续进位
	while (c.s[i]) {c.s[i+1] = c.s[i]/10; c.s[i] %= 10; i++;}
	// 确保最高位不为0
	while (i>1 && !c.s[i]) i--;
	c.len = i;
}

// 大整数的除法
void Divide(const HP a, const HP b, HP &c, HP &d)
{
	int i, j;
	// 用余数d存被除数a的前i位数据,用来多次减去除数b,以得到商c
	d.len = 1; d.s[1] = 0;
	for (i=a.len; i>0; i--)
	{
		if (!(d.len == 1 && d.s[1] == 0))
		{
			// i没移一位,余数d也移位
			for (j=d.len; j>0; j--)
				d.s[j+1] = d.s[j];
			d.len++;
		}
		d.s[1] = a.s[i];
		c.s[i] = 0;
		// 余数d大于除数b时,才可以进行减操作
		while ((j=HPCompare(d,b)) >= 0)
		{
			Subtract(d, b, d);
			c.s[i]++;
			if (j == 0) break;
		}
	}
	c.len = a.len;
	while (c.len > 1 && c.s[c.len] == 0)
		c.len--;
}
// 十进位右移
void RightShift(HP &x, int k)
{
	for (int i=1; i<=x.len-k; i++)
		x.s[i] = x.s[i+k];
	x.len -= k;
	if(x.len <= 0)
	{
		x.len = 1;
		x.s[1] = 0;
	}
}
// 十进位左移
void LeftShift(HP &x, int k)
{
	int i;
	for (i=x.len; i>=1; i--)
		x.s[i+k] = x.s[i];
	for (i=k; i>=1; i--)
		x.s[i] = 0;
	x.len += k;
}
// 求大整数的最大公约数
void GCD(HP a, HP b, HP &c)
{
	if (b.len == 1 && b.s[1] == 0)
	{
		c.len = a.len;
		memcpy(c.s, a.s, (a.len+1)*sizeof(int));
	}
	else
	{
		HP m, n;
		Divide(a, b, m, n);
		GCD(b, n, c);
	}
}

int main()
{
	string str;
	string strc, stra, strb;
	cin >> str;
	int posc = str.find('.');
	int posa = str.find('(');
	int posb = str.find(')');
	strc = str.substr(0, posc);
	if (posc < 0)
		cout << strc;
	else
	{	
		HP a, b, c;
		HP tmp; tmp.len = 1; tmp.s[1] = 1;
		// 整数部分
		Str2HP(strc.c_str(), c);
		stra = str.substr(posc+1, posa-posc-1);
		// 非循环部分
		Str2HP(stra.c_str(), a);
		// up分子,down分母
		HP up = c, down = tmp;
		// 乘以10^|a|
		LeftShift(down, stra.size());
		LeftShift(up, stra.size());
		Plus(up, a, up);
		if (posa >= 0)
		{
			strb = str.substr(posa+1, posb-posa-1);
			// 循环部分
			Str2HP(strb.c_str(), b);
			HP m = tmp;
			LeftShift(m, strb.size());
			Subtract(m, tmp, m);
			// 乘以10^(|b|-1)
			Multi(up, m, up);
			Plus(up, b, up);
			Multi(down, m, down);
		}
		// 求分子分母的最大公约数
		GCD(down, up, tmp);
		HP h;
		Divide(down, tmp, down, h);
		Divide(up, tmp, up, h);
		PrintHP(up); cout << "/";
		PrintHP(down); cout << endl;
	}
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值