InfluxDB 2 - Flux 案例

数据:

#_measurement:rig
#tag:ip
#field:gpu_count gpu数量
#field:total_khs gpu总速度
#field:device_count 机器数量,纯粹为了统计机器数用


p = influxdb_client.Point("rig").tag("ip", myaddr).field("gpu_count", gpuCount).field("total_khs", total_khs).field("device_count", 1)

统计设备数量

找了好久也没看到基于flux统计机器数量(基于tag的count统计),转弯在上报数据里,专门加了一个字段device_count=1,表示机器数量

from(bucket: "fxos")
  |> range(start: v.timeRangeStart, stop: v.timeRangeStop)
  |> filter(fn: (r) => r["_measurement"] == "rig")
  |> filter(fn: (r) => r["_field"] == "device_count")
  |> unique(column:"ip")
  |> drop(columns:["ip"])
  |> aggregateWindow(every: 5m, fn: sum, createEmpty: false)
  |> yield(name: "sum")

统计group

from(bucket: "trial_bucket")
  |> range(start: -15m)
  |> filter(fn: (r) => r._measurement == "http_api_request_duration_seconds")

默认其实就有group,是按‘start’ 和 ‘end’ 来分组的

 进一步

from(bucket: "trial_bucket")
  |> range(start: -15m)
  |> filter(fn: (r) => r._measurement == "http_api_request_duration_seconds")
  |> group(columns: ["_measurement", "_field"])

 

 

第三步

from(bucket: "trial_bucket")
  |> range(start: -15m)
  |> filter(fn: (r) => r._measurement == "http_api_request_duration_seconds")
  |> group(columns: ["_time"])
  |> mean()
  |> group()  

参数 mode

group有个参数mode,2个值

  • by: 默认值,根据前面的参数排序
  • except: 除了前面的参数,剩下的都参与group

Accordingly, we can modify the above code to get the same result:

from(bucket: "trial_bucket")
  |> range(start: -15m)
  |> filter(fn: (r) => r._measurement == "http_api_request_duration_seconds")
  |> group(columns: ["_time"])
  |> mean()
  |> group(columns: ["_time", "_value"], mode: "except")

参考:

InfluxDB 2 - InfluxQL VS Flux

Grouping data with Flux in InfluxDB

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值