Focal Loss

Focal Loss是为了解决one-stage目标检测中的样本不均衡问题,通过降低易分样本的权重,提高难分样本的权重。文章介绍了Focal Loss的背景,包括交叉熵的概念,然后详细解释了Focal Loss的公式及其对多分类任务的适用性,并提供了针对多分类的Focal Loss实现。
摘要由CSDN通过智能技术生成

Focal Loss是在论文Focal Loss for Dense Object Detection中提到,主要是为了解决one-stage目标检测中样本不均衡的问题。因为最近工作中也遇到了样本不均衡的问题,但是因为是多分类问题,Focal loss和网上提供的实现大都是针对二分类的,所以阅读论文。本文我将解释论文中的内容以及自己的理解,同时文末会提供Focal loss针对多分类的实现。

下面我们先来看一下论文:

背景及相关工作

目标检测算法大都是基于两种结构:一种是以R-CNN为代表的two-stage,proposal 驱动算法。这种算法在第一阶段针对目标样本生成一份比较稀疏的集合,第二阶段对这份集合进行分类和提取,两个阶段下来速度就大打折扣了。另一种是以YOLO,SSD为代表的one-stage的目标检测算法,只用一个阶段就完成目标样本的检测和回归,速度相对于two-stage目标检测算法自然是有所提升,但是效果却大打折扣。

为什么one-stage的目标检测算法效果要差于two-stage呢。文中认为这是因为训练过程中类别失衡造成的,在two-stage检测算法中,第一阶段已经过滤了大部分的背景,将目标缩小在一定的范围内。而对于one-stage检测来说样本中包含了大量没有目标的背景,这导致样本的比例失衡,训练的时候负样本过多,导致他的loss过大而淹没了正样本的loss不利于收敛。一种解决办法是难分负样本挖掘,然后对这些样本单独训练。

但是本文的做法是提出了Focal loss,降低易分样本的权重,提高难分样本的权重。

Focal Loss

1. 交叉熵

首先我们先简单了解一下交叉熵。

在信息学中信息熵(entropy)是表示系统的混乱程度和确定性的。一条信息的信息量和他的确定程度有直接关系,如果他的确定程度很高那么我们不需要很大的信息量就可以了解这些信息,例如北京是中国的首都,我们是很确定的,不需要其他的信息就可以判断这条信息对不对。那么一个系统的熵如何计算呢:
在这里插入图片描述
他是表示系统的不确定性的度量,当x的状态越多信息熵就越大,当x均匀分布时熵最大。当我们的样本集有两个分布p(x)表示真实分布,q(x)表示非真实分布,那么当我们用p(x)表示样本集的熵即为刚才我们说的信息熵。那么如果使用q(x)表示样本的熵怎么表示呢?注意到此时样本的真实分布是p(x)这个就是交叉熵(cross entropy)了。
在这里插入图片描述
对于二分类问题来说,他的交叉熵是:
在这里插入图片描述
其中p表示y=1的概率,这里我们定义
在这里插入图片描述
那么交叉熵可以表示为:
在这里插入图片描述
这里我们来看一张收敛的模型在测试数据集中的梯度分布,图片来自困难样本(Hard Sample)处理方法。最左边梯度接近于0就是简单样本,简单样本的数量很多。中间部分是一些不同难度的样本,最右边就是loss很大的困难样本,这些样本在数量上相对于简单样本是非常少的,所以即使他们的梯度很大,但是如果使用交叉熵,那么他们对loss的贡献还是很少,所以他们还是很难学。
在这里插入图片描述
下图是文中所给的不同样本的loss分布,还是如我们刚才所讨论的。这些易分的样本loss虽然不高但是数量很多,所以导致困难样本的loss容易被这些简单样本所覆盖,导致他们更加难学习。而引入focal loss之后可以看到我们降低了简单样本的loss,从而提高了他们对梯度的贡献。那么什么是focal loss呢,我们下面将着重介绍focal loss.
在这里插入图片描述

2. Focal loss

对于二分类问题Focal loss计算如下:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值