hashmap

put

    // table是保存在全局的数组
    // Node是table中的元素,一个key对应一个Node
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        //tab就是数组,n是数组长度
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // tab是null就用resize初始化
        // 由于tab和table指向同一地址,所以table也会初始化
        // n设置为数组长度
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 计算出指定位置i,如果tab[i]为null,就新建一个Node放在tab[i]
        // p也指向新Node,也是链表首节点
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
            // 如果p已经有值,即发生hash碰撞
        else {
            // 如果key存在对应的节点,就把它赋值给e
            Node<K,V> e; K k;
            // 此时p是链表或红黑树的首个节点
            // 判断首节点的key和要插入的key是否相等(==和equals涵盖基本类型和对象类型),
            // 如果相等就是已存在key对应的节点,把p赋值给e
            if (p.hash == hash &&
                    ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 如果p的类型是TreeNode,说明是红黑树
            // 接下来就遍历红黑树,如果存在key对应的节点,则返回节点,如果不存在,就新增节点,返回null
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            // 仍是链表
            else {
                // 循环链表
                for (int binCount = 0; ; ++binCount) {
                    // 到达链表末尾
                    if ((e = p.next) == null) {
                        // 向链表末尾添加新节点
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            // 长度大于等于8时,转化为红黑树
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 存在相等key就结束循环
                    if (e.hash == hash &&
                            ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            // e不为null就是key已有对应的节点
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                // onlyIfAbsent表示不替换旧值
                // 旧值为空时可以直接替换
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                // 空实现
                afterNodeAccess(e);
                return oldValue;
            }
        }
        // 记录修改次数
        ++modCount;
        // size记录当前map元素数量
        // size大于threshold则扩容
        if (++size > threshold)
            resize();
        // 空实现
        afterNodeInsertion(evict);
        return null;
    }

resize

    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                    oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                    (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        // 非初始化
        if (oldTab != null) {
            // 循环旧table
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                // 如果e为空就不管,只把链表和红黑树散列到新表不同位置
                if ((e = oldTab[j]) != null) {
                    // 把j位置置空
                    oldTab[j] = null;
                    // 如果链表只有一个节点,直接把它放到e.hash & (newCap - 1)位置
                    // 证明见解释1
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    // 红黑树就拆分到?
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    // 不止一个节点的链表最终会拆分成两个链表,一个还在j位置,一个在j + oldCap位置
                    // 证明见解释1
                    else { // preserve order
                        // j位置链表头尾
                        Node<K,V> loHead = null, loTail = null;
                        // j + oldCap位置链表头尾
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        // 循环链表
                        do {
                            next = e.next;
                            // 新旧下标相同,维护lo链表
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            // 新旧下标不同,维护hi链表
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

1.下标计算公式为e.hash& (cap - 1);所以元素在新数组的下标就是e.hash& (2*oldCap - 1),为何容量总是2的倍数见解释2;

oldCap-1: 0011...1(oldCap-2个1)

e.hash: abcd...x

下标: 00cd...x

2*oldCap-1: 0111...1(oldCap-1个1)

e.hash: abcd...x

下标: 0bcd...x

显然新旧下标只有b那一位有差异,如果b是0,那么新旧下标一样,不需要移动,如果是1,只用加上100...0即可,就是(oldCap-1)+1=oldCap;在JDK7中,会调用hash(key)重新计算hash,所以性能差;

2.数组容量是2的倍数即100...0,在计算下标时(cap-1)变成011...1,可以充分利用e.hash首位之后的每一位,实现均匀分布,尽量避免hash冲突;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值