观察者模式(Observer)

        观察者模式(Observer)完美的将观察者和被观察的对象分离开。让被观察者专注于变化的处理,观察者专注于观察主题变化后的处理。相互不再耦合在一起。

        举个例子,用户界面可以作为一个观察者,业务数据是被观察者,用户界面观察业务数据的变化,发现数据变化后,就显示在界面上。面向对象设计的一个原则是:系统中的每个类将重点放在某一个功能上,而不是其他方面。一个对象只做一件事情,并且将他做好。观察者模式在模块之间划定了清晰的界限,提高了应用程序的可维护性和重用性。

        观察者模式有很多实现方式,从根本上说,该模式必须包含两个角色:观察者和被观察对象。在刚才的例子中,业务数据是被观察对象,用户界面是观察者。观察者和被观察者之间存在“观察”的逻辑关联,当被观察者发生改变的时候,观察者就会观察到这样的变化,并且做出相应的响应。如果在用户界面、业务数据之间使用这样的观察过程,可以确保界面和数据之间划清界限,假定应用程序的需求发生变化,需要修改界面的表现,只需要重新构建一个用户界面,业务数据不需要发生变化。

“观察”不是“直接调用”

  实现观察者模式的时候要注意,观察者和被观察对象之间的互动关系不能体现成类之间的直接调用,否则就将使观察者和被观察对象之间紧密的耦合起来,从根本上违反面向对象的设计的原则。无论是观察者“观察”观察对象,还是被观察者将自己的改变“通知”观察者,都不应该直接调用。


      监听器就是典型观察者模式的体现。


简单地说,观察者模式定义了一个一对多的依赖关系,让一个或多个观察者对象监察一个主题对象。这样一个主题对象在状态上的变化能够通知所有的依赖于此对象的那些观察者对象,使这些观察者对象能够自动更新。

  观察者模式的结构

  观察者(Observer)模式是对象的行为型模式,又叫做发表-订阅(Publish/Subscribe)模式、模型-视图(Model/View)模式、源-收听者(Source/Listener)模式或从属者(Dependents)模式。

  本模式的类图结构如下:

被观察者类Observable的源代码:


package  java.util;
public   class  Observable
{
private boolean changed = false;
private Vector obs;

/** 用0个观察者构造一个被观察者。**/

public Observable()
{
obs 
= new Vector();
}


/**
* 将一个观察者加到观察者列表上面。
*/

public synchronized void addObserver(Observer o)
{
if (!obs.contains(o))
{
obs.addElement(o);
}

}


/**
* 将一个观察者对象从观察者列表上删除。
*/

public synchronized void deleteObserver(Observer o)
{
obs.removeElement(o);
}


/**
* 相当于 notifyObservers(null)
*/

public void notifyObservers()
{
notifyObservers(
null);
}


/**
* 如果本对象有变化(那时hasChanged 方法会返回true)
* 调用本方法通知所有登记在案的观察者,即调用它们的update()方法,
* 传入this和arg作为参量。
*/

public void notifyObservers(Object arg)
{
/**
* 临时存放当前的观察者的状态。参见备忘录模式。
*/

Object[] arrLocal;

synchronized (this)
{
if (!changed) return;
arrLocal 
= obs.toArray();
clearChanged();
}


for (int i = arrLocal.length-1; i>=0; i--)
((Observer)arrLocal[i]).update(
this, arg);
}


/**
* 将观察者列表清空
*/

public synchronized void deleteObservers()
{
obs.removeAllElements();
}


/**
* 将“已变化”设为true
*/

protected synchronized void setChanged()
{
changed 
= true;
}


/**
* 将“已变化”重置为false
*/

protected synchronized void clearChanged()
{
changed 
= false;
}


/**
* 探测本对象是否已变化
*/

public synchronized boolean hasChanged()
{
return changed;
}


/**
* 返还被观察对象(即此对象)的观察者总数。
*/

public synchronized int countObservers()
{
return obs.size();
}

}

观察者模式的效果有以下的优点:

  第一、观察者模式在被观察者和观察者之间建立一个抽象的耦合。被观察者角色所知道的只是一个具体观察者列表,每一个具体观察者都符合一个抽象观察者的接口。被观察者并不认识任何一个具体观察者,它只知道它们都有一个共同的接口。

  由于被观察者和观察者没有紧密地耦合在一起,因此它们可以属于不同的抽象化层次。如果被观察者和观察者都被扔到一起,那么这个对象必然跨越抽象化和具体化层次。

  第二、观察者模式支持广播通讯。被观察者会向所有的登记过的观察者发出通知,

  观察者模式有下面的缺点

  第一、如果一个被观察者对象有很多的直接和间接的观察者的话,将所有的观察者都通知到会花费很多时间。

  第二、如果在被观察者之间有循环依赖的话,被观察者会触发它们之间进行循环调用,导致系统崩溃。在使用观察者模式是要特别注意这一点。

  第三、如果对观察者的通知是通过另外的线程进行异步投递的话,系统必须保证投递是以自恰的方式进行的。

  第四、虽然观察者模式可以随时使观察者知道所观察的对象发生了变化,但是观察者模式没有相应的机制使观察者知道所观察的对象是怎么发生变化的。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值