1.1 电感基本知识
☆ 电感的特性:
Q = L*i Q -电感存储的能量 L-电感 i-电流
电感上电流不能激变,电压可以激变
电感的感应电动势与电感电流的斜率有关,而与电流大小无关。
☆. 电感感应电动势:
电路中感应电动势的大小,跟穿过这一电路的磁通变化率成正比,若感应电动势用 ε 表示,
则 ε = dφ / dt.,式中dφ为磁通量变化,dt为时间变化。若闭合回路中有一个 n 匝的线圈,
那么感应电动势 ε = n* (dφ / dt)
电感感应电动势公式: ε = dφ / dt. 式中: ε- 感应电动势 dφ -磁通变化 dt -时间变化
磁通量与磁感应强度成正比,而磁感应强度又与电流变化di/dt成正比,那么就推算出:
**ε = dφ / dt = L * (di /dt) 式中:L-电感值 di-电流变化 dt-时间变化**
☆. 电感感抗基本公式:
**XL = ωL = 2πfL 式中: XL-电感的感抗 π-3.141 f-频率 L-电感值**
☆. 电感上瞬态电流计算公式:
如上 如实9所示:
电感上瞬态电流计算公式:
**iL= Vin* (1- e^(-t / (L/R))) = Vin* (1- e^(-t R/ L))**
式中 iL-电感上的瞬态电流 Vin-输入电压 t-时间 L-电感值 R-串联电阻 e-常数
另外,由公式 ε = dφ / dt = L * (di /dt) 可以得出电感上的瞬态电流:
di /dt = ε / L 式中: di /dt-电感瞬态电流 ε-电感两端的电压 L-电感
1.2 电容基本知识
☆ 电容的特性:
电容的容量 C = Q / V Q(电容存储的电荷数),V(电容充满后的电压),C(电容容量)
电容上电压不能突变。
电容上电流可以激变(产生电流浪涌)。
☆ 电容的相关公式:
☆ 电容应用于充电回路的计算公式:
如上图所示:
电容上瞬态充电电压计算公式: Vc =V0+ (Vin -V0)* (1- e^(-t / R * C))
Vc是电容瞬间电压,Vin是电源电压,t是充电时间,R是充电电阻,C是电容,以及常数 e ≈ 2.71828
V0为电容上初始电压。
*知识点(延伸):指数函数 y=a^x 中,已知a和y求x是怎么算的?:
两边取对数,并整理得:x=ln(y)/ ln(a)。
例:假设Vin = 12V ,R19 =1K,Vc点从0V充电到5.6V的时间为 t设定为500uS,求C的电容取值。
–由上得知Vin = 12V, V0 = 0V,Vc = 5.6V ,
–那么根据公式Vc =V0+ (Vin -V0)* (1- e^(-t / R * C))有 5.6 = 0 + (12 - 0)* (1- e^(-t / R * C))。
–得出 (1- e^(-t / R * C)) = 5.6 / 12 = 0.466,
–得出 e^(-t / R * C) = 1- 0.466 = 0.533。
–然后根据指数函数y=a^x 求x值公式:x=ln(y)/ ln(a)代入 参数
–得到 -t/R*X =ln(0.5334)/ ln(e),代入已知的R,t值,求得X = 0.8uF,也就是电容值
☆ 电容应用于放电回路的充电电流计算公式:
电容充电电流的计算式:It = (Vin / R) * e^(-t / τ))
式中 Vin-对电容进行充电的电压 τ:充电时间常数 τ=RC R:充电串联电阻(充电电压内阻+串联电阻)C:充电电容
☆ 电容应用于放电回路的计算公式:
如上图所示: 假设电容C初始电压为Ve,那么 t 时刻电容上电压Vc由以下公式计算得到
电容电压放电计算公式 计算公式:Vc = Ve* e^(-t / R * C))
Vc是电容瞬间电压,Ve是电容上放电初始电压,t是放电时间,R是放电电阻,C是电容,
以及常数 e ≈ 2.71828
☆ 电容的容抗: Zc= 1/(2πfc) f:表示电容上电压的频率 c:表示电容的容值
☆ 电容应用于串联降压电路下输出电流的计算:
如上图所示,假设C两端的压降为Vin,C的容抗为Zc,那么C上流过的平均电流 Ic = Vin / Zc.
即频率和C的值决定了负载的电流。Zc= 1/(2πfc)
☆ 电容应用于整流滤波电路中滤波电容值的计算
*C =iL / (dV * f)* 或者 *C = iL * (dt / dV)*
iL:电容C的负载电流 dV :C上电压的变化量(纹波) f:充电频率 dt:充电周期(频率的倒数)
例题:假设允许电容上的纹波为0.9V,频率为54KHZ,负载电流Iout = 100mA,计算滤波电容值。
滤波电容 C = Il / (dV *f) = 0.1 / (0.9 * 54000) = 2uF