有N件物品和一个容量为V的背包。第i件物品的体积是w[i],价值是p[i]。求解将哪些物品装入背包可使价值总和最大。
分析:
1、f[i][j]代表将前i个物品装到容量为j的背包中的最大价值;
2、f[i-1][j-w[i]]+p[i]代表若将第i件放入背包之后的最大价值,即如果第i件放进去,那么在容量v-w[i]里就要放进前i-1件物品
得出,状态转移方程:f(i,j)=max{f(i-1,j),f[i-1][j-w[i]]+p[i]},w[i]<=j,边界f(0,j)=0,f(i,0)=0,比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种。
f[i][j]只与f[i-1][j]和f[i-1][j-C[i]]有关,即只和i-1时刻状态有关,所以我们只需要用一维数组f[]来保存i-1时的状态F[]。假设i-1时刻的F[]为{f0,f1,f2,…,fv},那么i时刻的F[]中第k个应该为max(f[k],f[k-w[i]]+p[i]),这就需要我们遍历V时逆序遍历,这样才能保证求i时刻f[k]时f[k-w[i]]是i-1时刻的值。如果正序遍历则当求f[k]时其前面f0],f[1],…,f[K-1]都已经改变过,里面存的都不是i-1时刻的值,这样求f[k]时利用f[K-w[i]]必定是错的值。
一维数组:
f[j] = max(f[j-w[i]]+val[i], f[j]);
import java.util.Scanner;
public class t4 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int N, V;
N = sc.nextInt();// 物品个数
V = sc.nextInt();// 背包容量
int w[] = new int[N + 1];
int p[] = new int[N + 1];
for (int i = 1; i < N + 1; i++) {
w[i] = sc.nextInt();
p[i] = sc.nextInt();
}
int a[] = new int[V + 1];
boolean[][] vis = new boolean[N + 1][V + 1];
int f[][] = new int[N + 1][V + 1];
for (int i = 1; i <= N; i++) {
for (int j = V; j >= 0; j--) {
if (w[i] <= j) {
if (f[i - 1][j] >= f[i - 1][j - w[i]] + p[i]) {
f[i][j] = f[i - 1][j];
} else {
f[i][j] = f[i - 1][j - w[i]] + p[i];
vis[i][j] = true;
}
} else {
f[i][j] = f[i - 1][j];
}
}
}
for (int i = N, j = V; i >= 1; i--) {
if (vis[i][j] && j >= 0) {
System.out.printf("%d ", w[i]);
j -= w[i];
}
}
System.out.println(f[N][V]);// 输出最优解
}
}
定义一个二维数组vis[N+1][V+1]来存放背包内物品信息,开始时vis[N+1][V+1]初始化为false,当f[i][j]==f[i-1][j-w[i]]+p[i]时vis[i][j]置true。最后通过从vis[N+1][V+1]逆着走向vis[0][0]来获取背包内物品。其中vis[0][]与vis[][0]为边界。
import java.util.Scanner;
public class t4 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int N, V;
N = sc.nextInt();// 物品个数
V = sc.nextInt();// 背包容量
int w[] = new int[N + 1];
int p[] = new int[N + 1];
for (int i = 1; i < N + 1; i++) {
w[i] = sc.nextInt();
p[i] = sc.nextInt();
}
int a[] = new int[V + 1];
boolean[][] vis = new boolean[N + 1][V + 1];
int f[][] = new int[N + 1][V + 1];
for (int i = 1; i <= N; i++) {
for (int j = V; j >= 0; j--) {
if (w[i] <= j) {
if (f[i - 1][j] >= f[i - 1][j - w[i]] + p[i]) {
f[i][j] = f[i - 1][j];
} else {
f[i][j] = f[i - 1][j - w[i]] + p[i];
vis[i][j] = true;
}
} else {
f[i][j] = f[i - 1][j];
}
}
}
for (int i = N, j = V; i >= 1; i--) {
if (vis[i][j] && j >= 0) {
System.out.printf("%d ", w[i]);
j -= w[i];
}
}
System.out.println(f[N][V]);// 输出最优解
}
}
问题描述
每个物品有一定的体积(废话),不同的物品组合,装入背包会战用一定的总体积。假如每个物品有无限件可用,那么有些体积是永远也装不出来的。为了尽量装满背包,附中的OIER想要研究一下物品不能装出的最大体积。题目保证有解,如果是有限解,保证不超过2,000,000,000
如果是无限解,则输出0
输入格式
第一行一个整数n(n<=10),表示物品的件数
第2行到N+1行: 每件物品的体积(1<= <=500)
输出格式
一个整数ans,表示不能用这些物品得到的最大体积。
样例输入
3
3
6
10
样例输出
17
import java.util.Scanner;
public class t5 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int s[] = new int[n];
for (int i = 0; i < n; i++)
s[i] = sc.nextInt();
int t = s[0];
for (int i = 0; i < n; i++)
t = gcd(t, s[i]);
if (t != 1) {
System.out.println(0);
return;
}
int dp[] = new int[100000000];
for (int i = 0; i < n; i++)
dp[s[i]] = 1;
for (int i = 0; i < dp.length; i++) {
if (dp[i] == i)
continue;
for (int j = 0; j < n; j++) {
if (s[j] > i)
continue;
dp[i] = Math.max(dp[i - s[j]], dp[i]);
if (dp[i] == 1)
break;
}
}
for (int i = dp.length - 1; i >= 0; i--) {
if (dp[i] == 0) {
System.out.println(i);
return;
}
}
System.out.println(0);
}
public static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
}