LeetCode327区间和的个数

题目描述

给定一个整数数组 nums,返回区间和在 [lower, upper] 之间的个数,包含 lower 和 upper。
区间和 S(i, j) 表示在 nums 中,位置从 i 到 j 的元素之和,包含 i 和 j (i ≤ j)。
输入: nums = [-2,5,-1], lower = -2, upper = 2,
输出: 3 
解释: 3个区间分别是: [0,0], [2,2], [0,2],它们表示的和分别为: -2, -1, 2。

解题思路

定义sum[] 数组sum[i]代表数组前i个数字和,也就是nums数组前缀和
设前缀和数组为 preSum,则问题等价于求所有的下标对 (i,j),满足
preSum[j]−preSum[i]∈[lower,upper]
1.在已知两个数组均为升序的情况下,这一问题是相对简单的:我们在 n2中维护两个指针 l,r。起初,它们都指向 n2 的起始位置。
2.随后,我们考察 n1 的第一个元素。首先,不断地将指针 l 向右移动,直到 n2[l] ≥n1[0]+lower 为止,此时, l 及其右边的元素均大于或等于 n1[0]+lower;
3.随后,再不断地将指针 r 向右移动,直到 n2[r] > n1[0] + upper为止,则 r 左边的元素均小于或等于 n1[0]+upper。
4.故区间 [l,r) 中的所有下标 j,都满足n2[j]−n1[0]∈[lower,upper]
5.接下来,我们考察 n1的第二个元素。
class Solution {
    public int countRangeSum(int[] nums, int lower, int upper) {
        long s = 0;
        long[] sum = new long[nums.length + 1];
        for (int i = 0; i < nums.length; ++i) {
            s += nums[i];
            sum[i + 1] = s;
        }
        return countRangeSumRecursive(sum, lower, upper, 0, sum.length - 1);
    }

    public int countRangeSumRecursive(long[] sum, int lower, int upper, int left, int right) {
        if (left == right) {
            return 0;
        } else {
            int mid = (left + right) / 2;
            int n1 = countRangeSumRecursive(sum, lower, upper, left, mid);
            int n2 = countRangeSumRecursive(sum, lower, upper, mid + 1, right);
            int ret = n1 + n2;

            // 首先统计下标对的数量
            int i = left;
            int l = mid + 1;
            int r = mid + 1;
            while (i <= mid) {
                while (l <= right && sum[l] - sum[i] < lower) {
                    l++;
                }
                while (r <= right && sum[r] - sum[i] <= upper) {
                    r++;
                }
                ret += r - l;
                i++;
            }

            // 随后合并两个排序数组
            int[] sorted = new int[right - left + 1];
            int p1 = left, p2 = mid + 1;
            int p = 0;
            while (p1 <= mid || p2 <= right) {
                if (p1 > mid) {
                    sorted[p++] = (int) sum[p2++];
                } else if (p2 > right) {
                    sorted[p++] = (int) sum[p1++];
                } else {
                    if (sum[p1] < sum[p2]) {
                        sorted[p++] = (int) sum[p1++];
                    } else {
                        sorted[p++] = (int) sum[p2++];
                    }
                }
            }
            for (int j = 0; j < sorted.length; j++) {
                sum[left + j] = sorted[j];
            }
            return ret;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值