题目描述
给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
示例 1:
输入: "babad"
输出: "bab"
注意: "aba" 也是一个有效答案。
示例 2:
输入: "cbbd"
输出: "bb"
暴力
根据回文子串的定义,枚举所有长度大于等于 2 的子串,依次判断它们是否是回文;
在具体实现时,可以只针对大于“当前得到的最长回文子串长度”的子串进行“回文验证”;
在记录最长回文子串的时候,可以只记录“当前子串的起始位置”和“子串长度”,不必做截取。这一步我们放在后面的方法中实现。
public class Solution {
public String longestPalindrome(String s) {
int len = s.length();
if (len < 2) {
return s;
}
int maxLen = 1;
int begin = 0;
// s.charAt(i) 每次都会检查数组下标越界,因此先转换成字符数组,小细节
char[] charArray = s.toCharArray();
// 枚举所有长度大于 1 的子串 charArray[i..j]
for (int i = 0; i < len - 1; i++) {
for (int j = i + 1; j < len; j++) {
//j - i + 1 > maxLen这个用的很精髓。利用&&运算的短路特征,写在前面会优化许多。
if (j - i + 1 > maxLen && validPalindromic(charArray, i, j)) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substring(begin, begin + maxLen);
}
/**
* 验证子串 s[left..right] 是否为回文串
*/
private boolean validPalindromic(char[] charArray, int left, int right) {
while (left < right) {
if (charArray[left] != charArray[right]) {
return false;
}
left++;
right--;
}
return true;
}
}
动态规划
第 1 步:定义状态
dp[i][j] 表示子串 s[i…j] 是否为回文子串,这里子串 s[i…j] 定义为左闭右闭区间,可以取到 s[i] 和 s[j]。
第二步,列出状态转移方程。
依然从回文串的定义展开讨论:
如果一个字符串的头尾两个字符都不相等,那么这个字符串一定不是回文串;
如果一个字符串的头尾两个字符相等,才有必要继续判断下去。
如果里面的子串是回文,整体就是回文串;
如果里面的子串不是回文串,整体就不是回文串。
dp[i][j] = (s[i] == s[j]) && dp[i + 1][j - 1]
「动态规划」事实上是在填一张二维表格,由于构成子串,因此 i 和 j 的关系是 i <= j ,因此,只需要填这张表格对角线以上的部分。
求 长度为 1 和长度为 2 的 dp(i,j) 时不能用上边的公式,因为我们代入公式后会遇到 dp[i][j] 中 i > j 的情况,比如求 P[1][2] 的话,我们需要知道 dp[1+1][2-1]=dp[2][1] ,而 dp[2][1] 代表着 S[2,1] 是不是回文串,显然是不对的,所以我们需要单独判断。
public class Solution {
public String longestPalindrome(String s) {
// 特判
int len = s.length();
if (len < 2) {
return s;
}
int maxLen = 1;
int begin = 0;
// dp[i][j] 表示 s[i, j] 是否是回文串
boolean[][] dp = new boolean[len][len];
char[] charArray = s.toCharArray();
//初始化。
for (int i = 0; i < len; i++) {
dp[i][i] = true;
}
for (int j = 1; j < len; j++) {
for (int i = 0; i < j; i++) {
//下面if else可以用 || 运算来代替,增加可读性。因为 || 有短路功能。
//dp[i][j] = charArray[i] == charArray[j] && (j - i < 3 || dp[i + 1][j - 1]);
if (charArray[i] != charArray[j]) {
dp[i][j] = false;
} else if (j - i < 3) {
//长度为3,中间不用考虑,而且相等,那么就是true。
dp[i][j] = true;
} else{
dp[i][j] = dp[i + 1][j - 1];
}
// 只要 dp[i][j] == true 成立,就表示子串 s[i..j] 是回文,此时记录回文长度和起始位置
if (dp[i][j] && j - i + 1 > maxLen) {
maxLen = j - i + 1;
begin = i;
}
}
}
return s.substring(begin, begin + maxLen);
}
}
下面分别展示了错误的填表顺序和正确的填表顺序,以便大家理解动态规划要满足「无后效性」的意思。
说明:表格中的数字表示「填表顺序」,从 1 开始。表格外的箭头和数字也表示「填表顺序」,与表格中的数字含义一致。
方法三:中心扩散法
暴力法采用双指针两边夹,验证是否是回文子串。
除了枚举字符串的左右边界以外,比较容易想到的是枚举可能出现的回文子串的“中心位置”,从“中心位置”尝试尽可能扩散出去,得到一个回文串。
因此中心扩散法的思路是:遍历每一个索引,以这个索引为中心,利用“回文串”中心对称的特点,往两边扩散,看最多能扩散多远。
枚举“中心位置”时间复杂度为 O(N),从“中心位置”扩散得到“回文子串”的时间复杂度为 O(N),因此时间复杂度可以降到 O(N^2)。
在这里要注意一个细节:回文串在长度为奇数和偶数的时候,“回文中心”的形式是不一样的。
奇数回文串的“中心”是一个具体的字符,例如:回文串 “aba” 的中心是字符 “b”;
偶数回文串的“中心”是位于中间的两个字符的“空隙”,例如:回文串串 “abba” 的中心是两个 “b” 中间的那个“空隙”。
我们看一下一个字符串可能的回文子串的中心在哪里?
我们可以设计一个方法,兼容以上两种情况:
1、如果传入重合的索引编码,进行中心扩散,此时得到的回文子串的长度是奇数;
2、如果传入相邻的索引编码,进行中心扩散,此时得到的回文子串的长度是偶数。
具体编码细节在以下的代码的注释中体现。
public class Solution {
public String longestPalindrome(String s) {
int len = s.length();
if (len < 2) {
return s;
}
int maxLen = 1;
String res = s.substring(0, 1);
// 中心位置枚举到 len - 2 即可,区间是[0,len -2]
for (int i = 0; i < len - 1; i++) {
String oddStr = centerSpread(s, i, i);
String evenStr = centerSpread(s, i, i + 1);
String maxLenStr = oddStr.length() > evenStr.length() ? oddStr : evenStr;
if (maxLenStr.length() > maxLen) {
maxLen = maxLenStr.length();
res = maxLenStr;
}
}
return res;
}
private String centerSpread(String s, int left, int right) {
// left = right 的时候,此时回文中心是一个字符,回文串的长度是奇数
// right = left + 1 的时候,此时回文中心是一个空隙,回文串的长度是偶数
int len = s.length();
int i = left;
int j = right;
while (i >= 0 && j < len && s.charAt(i) == s.charAt(j)) {
i--;
j++;
}
// 这里要小心,跳出 while 循环时,恰好满足 s.charAt(i) != s.charAt(j),因此不能取 i,不能取 j
return s.substring(i + 1, j);
}
}
马拉车算法,自行参考下面两篇文章
https://www.jianshu.com/p/392172762e55
https://leetcode-cn.com/problems/longest-palindromic-substring/solution/zhong-xin-kuo-san-dong-tai-gui-hua-by-liweiwei1419/