给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000

1、问题描述

给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。

示例 1: 
	输入: "babad" 
	输出: "bab" 注意: "aba" 也是一个有效答案。 
示例 2:
	输入: "cbbd"
	输出: "bb

2、预备知识介绍

回文字符串:一个字符串的反序和正序的顺序一致,就说是回文字符串。

3、问题分析

我们使用一个具体的例子来进行分析
      0 1 2 3 4 5 6 7 8 9 (字符的下标)
例子:"a a b a a d a a b a"(这里的空格不算)
我们一般最常用的方法就是,遍历字符串的每一个字符,以当前的字符串为中心向两边扩展,如果两边相等,就是回文串,继续片判断;如果不相等则遍历下一个。如上面的字符串
"a a b a a d a a b a"
 0 1 2 3 4 5 6 7 8 9 
 遍历下标0时:回文串长度为1
 遍历下标1时:回文串长度应该为2,但是用上面的方法判断出来就是1,需要判断下标是偶数还是奇数,所以这里我们应该对原始字符串进行处理
 ......
 如何处理字符串?其实很简单,我们在字符串中间添加上特殊字符,如下
  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  
 "a # a # b # a # a # d   #   a   #   a   #   b   #   a   #"
 遍历下标0:长度为1
 遍历下标1:长度为3
 遍历下标2:长度为3
 遍历下标3:长度为1
 遍历下标4:长度为8
 遍历下标5:长度为1
 遍历下标6:长度为3
 遍历下标7:长度为3
 ...............

我们可以发现
回文子串的规律图

较大的红框中是关于下标4中心对称,其实并不难理解因为回文子串就是关于中心对称的,
因此我们知道了左半边的长度情况,就不用了算右边的情况了,可以直接得出右边子串的回文长度。

我们把一个回文串长度看成一个左边界、中心点和右边界组成一个封闭的区间,当我们知道做区间的情况,
也就知道了有区间的情况

4、程序实现步骤

步骤:1、处理字符串,加上特殊的字符
步骤:2、定义一个与处理后数组串长度一样的数组记录字符串对应下标的回文长度的一半(便于计算)
步骤:3、定义一个变量最长回文串的中心点(int center)和长度(int halfLongestLen)的一半(便于计算)
步骤:4、定义记录右边界(rightSide)和右边界中心点(rightCenter)
步骤:5、下面请看程序实现部分,详细说明
 /**
     * 给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。
     * <p>
     * 示例 1:
     * 输入: "babad"
     * 输出: "bab"
     * 注意: "aba" 也是一个有效答案。
     * <p>
     * 示例 2:
     * 输入: "cbbd"
     * 输出: "bb"
     */

    public String longestPalindrome(String s) {
        if (s == null || s.length() == 0) return "";
        if (s.length() == 1) return s;

        //预处理字符串
        s = preHandString(s);

        //记录每个中心点的回文长度
        int[] halfLongArr = new int[s.length()];

        //记录最长回文子串的长度和中心点
        int center = 0;
        int longest = 0;

        //记录右边界
        int rightSide = 0;
        //右边界中心
        int rightSideCenter = 0;

        for (int i = 0; i < s.length(); i++) {
            //是否需要中心扩展
            boolean needExplore = true;

            //当前中心点是否小于右边界
            if (i < rightSide) {
                //计算得到相应以右边界中心点对称左边的回文中心点
                int leftCenter = 2 * rightSideCenter - i;
                halfLongArr[i] = halfLongArr[leftCenter];

                //存在问题,左边中心点的回文串很长,其长度越过当前右边界回文串的边界
                //进行调整
                if (i + halfLongArr[i] > rightSide) {
                    halfLongArr[i] = rightSide - i;
                }

                //根据计算出的回文子串小于右边界,不需要扩展
                if (i + halfLongArr[leftCenter] < rightSide) {
                    needExplore = false;
                }
            }
            //需要中心扩展
            if (needExplore) {
                while (i - 1 - halfLongArr[i] >= 0 && i + 1 + halfLongArr[i] < s.length()) {
                    if (s.charAt(i + 1 + halfLongArr[i]) == s.charAt(i - 1 - halfLongArr[i])) {
                        halfLongArr[i]++;
                    } else {
                        break;
                    }
                }
                //更新右边界及中心
                rightSide = i + halfLongArr[i];
                rightSideCenter = i;
                if (halfLongArr[i] > longest) {
                    center = i;
                    longest = halfLongArr[i];
                }
            }

        }
        //去掉之前加上去特殊字符
        StringBuilder sb = new StringBuilder();
        for (int i = center - longest; i <= center + longest; i += 2) {
            if ((i == center - longest) && s.charAt(i) == '#') {
                i = i - 1;
                continue;
            }
            sb.append(s.charAt(i));
        }
        return sb.toString();

    }
### 回答1: 题目要求找出一个字符串s最长回文子串长度,且s的最大长度1000一个字符串正读反读与反读正读是完全一样的,例如 abcba 和 abccba 都是回文字符串。 解答:可以使用心扩展算法来寻找回文子串。具体操作是从字符串的每一个字符开始,分别向左右两边扩展,判断扩展出来的子串是否是回文串,记录最长子串长度即可。 注意题目要求的s字符串最大长度1000,我们需要进行长度的判断和限制,避免TLE等问题的发生。 ### 回答2: 题目要求我们在给定字符串寻找最长回文子串长度。首先,什么是回文子串?简单来说,就是从左往右和从右往左读起来都一样的子串。因此,我们需要寻找这样的连续子串最长一个。 一种简单的做法是枚举所有可能的子串,再逐个判断是否为回文子串。具体来说,我们可以从字符串的某个位置开始,向左右两边扩展,直到找到不满足回文的位置为止。这个方法的时间复杂度为 O(n^3),其 n 是字符串长度,因为我们需要枚举所有的子串,且对于每个子串还需要 O(n) 的时间来判断是否为回文。 另一种更高效的做法是基于动态规划的方法。我们定义 dp[i][j] 表示从 i 到 j 的子串是否为回文子串。那么当 s[i] == s[j] 时,dp[i][j] 可以由 dp[i+1][j-1] 推导而来。同时,当 j-i<=1 (即子串长度为 1 或 2)时,只需要判断 s[i] 是否等于 s[j] 即可。这个方法的时间复杂度为 O(n^2),即遍历所有子串的同时判断是否为回文子串。 最后,我们只需要在动态规划的过程记录最长回文子串即可。具体来说,我们可以维护一个变量 max_length,表示目前找到最长回文子串长度。如果 dp[i][j] 为真(即子串 s[i:j+1] 是回文子串),并且 j-i+1 大于 max_length,那么就更新 max_length 的值。最终,max_length 就是给定字符串最长回文子串长度。 综上所述,寻找最长回文子串的问题可以通过动态规划实现,时间复杂度为 O(n^2)。这个方法可以在较短的时间内处理长度1000字符串,是一种非常实用的算法。 ### 回答3: 回文字符串是指正反顺序读取字符串得到的结果是一样的字符串,比如“level”、“abccba”、“racecar”等等,而最长回文子串就是一个字符串包含的最长回文字符串。在给定字符串s,我们需要找到最长回文子串长度。 要解决这个问题,我们可以采用动态规划的方法。我们先定义状态变量,设dp[i][j]表示从i到j这段子串是否为回文串。对于一个长度为1的子串,显然是回文串,因此dp[i][i]=true。对于任意一个长度大于1的子串s[i...j],如果s[i]=s[j],并且s[i+1...j-1]也是回文串,那么s[i...j]就是回文串。如果s[i]!=s[j],那么s[i...j]肯定不是回文串。 根据上述定义的状态变量,我们可以推导出动态转移方程: dp[i][j]=(s[i]==s[j] and dp[i+1][j-1]), i<j; dp[i][i]=true; 根据这个状态转移方程,我们可以先从长度为1的子串开始,向外扩展,如果扩展得到的字符串回文串,则更新dp[i][j]的值。为了求出最长回文子串,我们要在遍历的过程记录最长回文子串长度。 时间复杂度:O(n^2)。由于存在嵌套循环,时间复杂度是O(n^2)。空间复杂度是O(n^2),因为需要存储dp数组。 以下是代码实现: class Solution { public: int longestPalindrome(string s) { int n=s.size(); int ans=0; vector<vector<bool>> dp(n,vector<bool>(n,false)); for(int i=0;i<n;i++) dp[i][i]=true; //初始化,长度为1的子串回文串 for(int len=2;len<=n;len++) { //枚举子串长度 for(int i=0;i<=n-len;i++) { //枚举子串的起始位置 int j=i+len-1; //子串的结束位置 if(s[i]==s[j] && (len==2 || dp[i+1][j-1])) { //状态转移方程 dp[i][j]=true; ans=max(ans,len); //更新最长回文子串长度 } } } return ans; } };
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值