题目描述
判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
示例 1:
输入: 121
输出: true
示例 2:
输入: -121
输出: false
解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:
输入: 10
输出: false
解释: 从右向左读, 为 01 。因此它不是一个回文数。
进阶:
你能不将整数转为字符串来解决这个问题
部分思想转自:
https://leetcode-cn.com/problems/palindrome-number/solution/dong-hua-hui-wen-shu-de-san-chong-jie-fa-fa-jie-ch/
方法一,简单暴力,转换为字符串
class Solution {
public boolean isPalindrome(int x) {
String s = String.valueOf(x);
int l = s.length();
int i =0;
int j = l-1;
while(i<=j){
if(s.charAt(i)!=s.charAt(j)){
return false;
}
i++;
j--;
}
return true;
}
}
解法二:进阶解法—数学解法
通过取整和取余操作获取整数中对应的数字进行比较。
举个例子:1221 这个数字。
通过计算 1221 / 1000, 得首位1
通过计算 1221 % 10, 可得末位 1
进行比较
再将 22 取出来继续比较
class Solution {
public boolean isPalindrome(int x) {
//边界判断
if (x < 0) return false;
int div = 1;
//计算多少位,类似个十百千,1,10,1000,10000等等。
while (x / div >= 10) div *= 10;
while (x > 0) {
//计算最高位
int left = x / div;
//计算最低位
int right = x % 10;
//判断是否相等
if (left != right) return false;
//因为每次去除两个位置,所以(x % div) /10,div /= 100
x = (x % div) / 10;
div /= 100;
}
return true;
}
}
解法三:进阶解法—巧妙解法,反转一半数字
直观上来看待回文数的话,就感觉像是将数字进行对折后看能否一 一对应。
所以这个解法的操作就是 取出后半段数字进行翻转。
这里需要注意的一个点就是由于回文数的位数可奇可偶,所以当它的长度是偶数时,它对折过来应该是相等的;当它的长度是奇数时,那么它对折过来后,有一个的长度需要去掉一位数(除以 10 并取整)。
具体做法如下:
每次进行取余操作 ( %10),取出最低的数字:y = x % 10
将最低的数字加到取出数的末尾:revertNum = revertNum * 10 + y
每取一个最低位数字,x 都要自除以 10
判断 x 是不是小于 revertNum ,当它小于的时候,说明数字已经对半或者过半了
最后,判断奇偶数情况:如果是偶数的话,revertNum 和 x 相等;如果是奇数的话,最中间的数字就在revertNum 的最低位上,将它除以 10 以后应该和 x 相等。
class Solution {
public boolean isPalindrome(int x) {
//负数或者10的倍数都不可能是回文数,因为任何整数不可能以0开头,类似01234,不符合整数定义。
if (x < 0 || (x % 10 == 0 && x != 0)) return false;
int revertedNumber = 0;
//将x看作是回文数,那么反转一半数字,肯定相等。如果是1234等这种不是回文数,那么肯定存在43>12的情况, 那么while循环结束后,肯定返回false。
while (x > revertedNumber) {
revertedNumber = revertedNumber * 10 + x % 10;
x /= 10;
}
return x == revertedNumber || x == revertedNumber / 10;
}
}