时间限制:1秒
空间限制:32768K
输入描述:
每个输入包含一个测试用例。 每个测试用例的第一行包含一个正整数,表示闹钟的数量N(N<=100)。 接下来的N行每行包含两个整数,表示这个闹钟响起的时间为Hi(0<=A<24)时Mi(0<=B<60)分。 接下来的一行包含一个整数,表示从起床算起他需要X(0<=X<=100)分钟到达教室。 接下来的一行包含两个整数,表示上课时间为A(0<=A<24)时B(0<=B<60)分。 数据保证至少有一个闹钟可以让牛牛及时到达教室。
输出描述:
输出两个整数表示牛牛最晚起床时间。
输入例子1:
3 5 0 6 0 7 0 59 6 59
输出例子1:
6 0
#include <iostream>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
#include <set>
#include<vector>
#include<map>
#include <set>
#include <queue>
#include <string>
#include <limits.h>
using namespace std;
class My_time
{
public:
int hour;
int minute;
My_time(int c, int p) :hour(c), minute(p){}
};
bool cmp(const My_time& lhs, const My_time& rhs)
{
if (lhs.hour == rhs.hour)
return lhs.minute < rhs.minute;
return lhs.hour < rhs.hour;
}
int main()
{
int numOfClock;
scanf("%d", &numOfClock);
vector<My_time> times;
for (int i = 0; i < numOfClock; i++)
{
int hour;
int minute;
scanf("%d", &hour);
scanf("%d", &minute);
times.push_back(My_time(hour, minute));
}
int timeToMove;
scanf("%d", &timeToMove);
//处理最晚起床时间
int hourOfclass, minuteOfclass;
scanf("%d", &hourOfclass);
scanf("%d", &minuteOfclass);
if (minuteOfclass >= timeToMove)
minuteOfclass -= timeToMove;
else
{
int haixuyaojigexiaoshi = (timeToMove - minuteOfclass) / 60 + 1;
hourOfclass -= haixuyaojigexiaoshi;
minuteOfclass = haixuyaojigexiaoshi * 60 + minuteOfclass - timeToMove;
}
My_time timeoToGetUp(hourOfclass, minuteOfclass);
sort(times.begin(), times.end(), cmp);
auto it = upper_bound(times.begin(), times.end(), timeoToGetUp, cmp);
it--;
cout<<it->hour<<" "<<it->minute<<endl;
return 0;
}
时间限制:1秒
空间限制:32768K
输入描述:
输入包括两行 第一行为两个正整数n和w(1 <= n <= 30, 1 <= w <= 2 * 10^9),表示零食的数量和背包的容量。 第二行n个正整数v[i](0 <= v[i] <= 10^9),表示每袋零食的体积。
输出描述:
输出一个正整数, 表示牛牛一共有多少种零食放法。
输入例子1:
3 10 1 2 4
输出例子1:
8
例子说明1:
三种零食总体积小于10,于是每种零食有放入和不放入两种情况,一共有2*2*2 = 8种情况。
#include <iostream>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <queue>
using namespace std;
int n;
long long w;
int helper(vector< unordered_map<long long, int> > &hhash, vector<long long>& v, int now_pos, long long had_fill)
{
if (hhash[now_pos + 1].find(had_fill) != hhash[now_pos + 1].end())
{
return hhash[now_pos + 1][had_fill];
}
int sum = 0;
for (int i = now_pos + 1; i < v.size(); i++)
{
if (had_fill + v[i] <= w)
{
sum += helper(hhash, v, i, had_fill + v[i]);
}
}
sum += 1; //不往后装了
hhash[now_pos + 1].insert(make_pair(had_fill, sum));
return sum;
}
int main()
{
scanf("%d", &n);
scanf("%d", &w);
vector< unordered_map<long long, int> > hhash(n + 1);
vector<long long> v(n);
for (int i = 0; i < n; i++)
scanf("%d", &v[i]);
int ret = helper(hhash, v, -1, 0);
printf("%d", ret);
return 0;
}
时间限制:1秒
空间限制:32768K
牛牛以前在老师那里得到了一个正整数数对(x, y), 牛牛忘记他们具体是多少了。
牛牛希望你能帮他计算一共有多少个可能的数对。
输入描述:
输入包括两个正整数n,k(1 <= n <= 10^5, 0 <= k <= n - 1)。
输出描述:
对于每个测试用例, 输出一个正整数表示可能的数对数量。
输入例子1:
5 2
输出例子1:
7
例子说明1:
满足条件的数对有(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(5,3)
#include <iostream>
#include <cstdio>
#include <string>
#include <algorithm>
using namespace std;
int main(void)
{
int n, k;
unsigned long long count = 0;
scanf("%d", &n);
scanf("%d", &k);
if (k == 0)
{
long long ret = n;
ret *= ret;
cout<<ret;
return 0;
}
for (int y = 1; y <= n; y++)
{
if (y > k)
count += y - k;
if (y > k)
{
int cheng = 1;
while (y * cheng + k <= n)
{
if (y * (cheng + 1) <= n)
{
count += y * (cheng + 1) - (y * cheng + k);
cheng ++;
}
else
{
count += n - (y * cheng + k) + 1;
break;
}
}
}
}
cout<<count;
return 0;
}
时间限制:1秒
空间限制:32768K
输入描述:
每个输入包含一个测试用例。 每个测试用例的第一行包含一个正整数,表示转方向的次数N(N<=1000)。 接下来的一行包含一个长度为N的字符串,由L和R组成,L表示向左转,R表示向右转。
输出描述:
输出牛牛最后面向的方向,N表示北,S表示南,E表示东,W表示西。
输入例子1:
3 LRR
输出例子1:
E
#include <iostream>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <queue>
using namespace std;
int main()
{
int n;
string w;
scanf("%d", &n);
cin>>w;
int k = 0;
for (int i = 0; i < w.size(); i++)
{
if (w[i] == 'L')
{
k --;
}
else
{
k ++;
}
k = k % 4;
}
if (k < 0)
k += 4;
if (k == 0)
cout<<"N";
if (k == 1)
cout<<"E";
if (k == 2)
cout<<"S";
if (k == 3)
cout<<"W";
return 0;
}
时间限制:1秒
空间限制:32768K
小Q正在给一条长度为n的道路设计路灯安置方案。
为了让问题更简单,小Q把道路视为n个方格,需要照亮的地方用'.'表示, 不需要照亮的障碍物格子用'X'表示。
小Q现在要在道路上设置一些路灯, 对于安置在pos位置的路灯, 这盏路灯可以照亮pos - 1, pos, pos + 1这三个位置。
小Q希望能安置尽量少的路灯照亮所有'.'区域, 希望你能帮他计算一下最少需要多少盏路灯。
输入描述:
输入的第一行包含一个正整数t(1 <= t <= 1000), 表示测试用例数 接下来每两行一个测试数据, 第一行一个正整数n(1 <= n <= 1000),表示道路的长度。 第二行一个字符串s表示道路的构造,只包含'.'和'X'。
输出描述:
对于每个测试用例, 输出一个正整数表示最少需要多少盏路灯。
输入例子1:
2 3 .X. 11 ...XX....XX
输出例子1:
1 3思路:贪心
#include <iostream>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <queue>
using namespace std;
int helper(string& str)
{
int ret = 0;
for (int i = 0; i < str.size(); i++)
{
if (str[i] == '.')
{
ret ++;
i += 2;
}
}
return ret;
}
int main()
{
int n;
scanf("%d", &n);
for (int i = 0; i < n; i++)
{
int len;
scanf("%d", &len);
string str;
cin>>str;
cout<<helper(str)<<endl;
}
return 0;
}
时间限制:1秒
空间限制:32768K
小Q得到一个神奇的数列: 1, 12, 123,...12345678910,1234567891011...。
并且小Q对于能否被3整除这个性质很感兴趣。
小Q现在希望你能帮他计算一下从数列的第l个到第r个(包含端点)有多少个数可以被3整除。
输入描述:
输入包括两个整数l和r(1 <= l <= r <= 1e9), 表示要求解的区间两端。
输出描述:
输出一个整数, 表示区间内能被3整除的数字个数。
输入例子1:
2 5
输出例子1:
3
例子说明1:
12, 123, 1234, 12345... 其中12, 123, 12345能被3整除。
#include <iostream>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <queue>
using namespace std;
int vaildnum(int k)
{
int dengyu = k / 3;
int yu = k % 3;
int ret = (yu == 0) ? 0 : yu - 1;
return dengyu * 2 + ret;
}
int main()
{
int l, r;
scanf("%d", &l);
scanf("%d", &r);
printf("%d", vaildnum(r) - vaildnum(l - 1));
return 0;
}
时间限制:2秒
空间限制:65536K
输入描述:
每个输入包含一个测试用例。 每个测试用例的第一行包含两个正整数,分别表示工作的数量N(N<=100000)和小伙伴的数量M(M<=100000)。 接下来的N行每行包含两个正整数,分别表示该项工作的难度Di(Di<=1000000000)和报酬Pi(Pi<=1000000000)。 接下来的一行包含M个正整数,分别表示M个小伙伴的能力值Ai(Ai<=1000000000)。 保证不存在两项工作的报酬相同。
输出描述:
对于每个小伙伴,在单独的一行输出一个正整数表示他能得到的最高报酬。一个工作可以被多个人选择。
输入例子1:
3 3 1 100 10 1000 1000000000 1001 9 10 1000000000
输出例子1:
100 1000 1001
#include <iostream>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
#include <set>
#include<vector>
#include<map>
#include <set>
#include <queue>
#include <string>
#include <limits.h>
using namespace std;
struct job
{
int cost;
int profit;
job(int c, int p) :cost(c), profit(p){}
};
bool cmp(const job& lhs, const job& rhs)
{
if (lhs.cost != rhs.cost)
return lhs.cost < rhs.cost;
return lhs.profit > rhs.profit;
}
int main()
{
int numOfJobs;
int numOfPers;
scanf("%d", &numOfJobs);
scanf("%d", &numOfPers);
vector<job> jobs;
for (int i = 0; i < numOfJobs; i++)
{
int cost;
int profit;
scanf("%d", &cost);
scanf("%d", &profit);
jobs.push_back(job(cost,profit));
}
vector<int> nums(numOfPers);
for (int i = 0; i < numOfPers; i++)
scanf("%d", &nums[i]);
sort(jobs.begin(), jobs.end(), cmp);
map<int, int> njobs;
njobs.insert(make_pair(0, 0));
for (int i = 0; i < numOfJobs; i++)
{
int last = njobs.rbegin()->second;
if (jobs[i].profit<=last)
continue;
njobs.insert(make_pair(jobs[i].cost, jobs[i].profit));
}
for (int i = 0; i < numOfPers; i++)
{
auto it = njobs.upper_bound(nums[i]);
if (it == njobs.end())
cout << njobs.rbegin()->second << endl;
else
cout << (--it)->second << endl;
}
return 0;
}
时间限制:1秒
空间限制:32768K
平面内有n个矩形, 第i个矩形的左下角坐标为(x1[i], y1[i]), 右上角坐标为(x2[i], y2[i])。
如果两个或者多个矩形有公共区域则认为它们是相互重叠的(不考虑边界和角落)。
请你计算出平面内重叠矩形数量最多的地方,有多少个矩形相互重叠。
输入描述:
输入包括五行。 第一行包括一个整数n(2 <= n <= 50), 表示矩形的个数。 第二行包括n个整数x1[i](-10^9 <= x1[i] <= 10^9),表示左下角的横坐标。 第三行包括n个整数y1[i](-10^9 <= y1[i] <= 10^9),表示左下角的纵坐标。 第四行包括n个整数x2[i](-10^9 <= x2[i] <= 10^9),表示右上角的横坐标。 第五行包括n个整数y2[i](-10^9 <= y2[i] <= 10^9),表示右上角的纵坐标。
输出描述:
输出一个正整数, 表示最多的地方有多少个矩形相互重叠,如果矩形都不互相重叠,输出1。
输入例子1:
2 0 90 0 90 100 200 100 200
输出例子1:
2
思路:
#include <iostream>
#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <unordered_set>
#include <set>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <string>
using namespace std;
class juxing
{
public:
int lb_x;
int lb_y;
int rt_x;
int rt_y;
juxing(int a, int b, int c, int d): lb_x(a), lb_y(b), rt_x(c), rt_y(d){}
};
int main()
{
int n;
scanf("%d", &n);
vector<int> lbX(n);
for (int i = 0; i < n; i++)
scanf("%d", &lbX[i]);
vector<int> lbY(n);
for (int i = 0; i < n; i++)
scanf("%d", &lbY[i]);
vector<int> rtX(n);
for (int i = 0; i < n; i++)
scanf("%d", &rtX[i]);
vector<int> rtY(n);
for (int i = 0; i < n; i++)
scanf("%d", &rtY[i]);
vector<juxing> AllJuXing;
for (int i = 0; i < n; i++)
AllJuXing.push_back(juxing(lbX[i], lbY[i], rtX[i], rtY[i]));
vector<int> XX;
for (int i = 0; i < n; i++)
{
XX.push_back(lbX[i]);
XX.push_back(rtX[i]);
}
vector<int> YY;
for (int i = 0; i < n; i++)
{
YY.push_back(lbY[i]);
YY.push_back(rtY[i]);
}
int count = 0, ret = 0;
for (int i = 0; i < XX.size(); i++)
{
for (int j = 0; j < YY.size(); j++)
{
for (int k = 0; k < AllJuXing.size(); k++)
{
if (XX[i] >= AllJuXing[k].lb_x && XX[i] < AllJuXing[k].rt_x && YY[j] >= AllJuXing[k].lb_y && YY[j] < AllJuXing[k].rt_y)
count ++;
}
ret = max(ret, count);
count = 0;
}
}
cout<<ret;
return 0;
}