
37. 解数独
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字
1-9
在每一行只能出现一次。 - 数字
1-9
在每一列只能出现一次。 - 数字
1-9
在每一个以粗实线分隔的3x3
宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 '.'
表示。
示例 1:
输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
解释:输入的数独如上图所示,唯一有效的解决方案如下所示:
提示:
board.length == 9
board[i].length == 9
board[i][j]
是一位数字或者'.'
- 题目数据 保证 输入数独仅有一个解
解题思路:暴力搜索 + 布尔值数组判断
首先这道题如果是暴力搜索加上判断合法性的时候使用暴力检查的话,那么也是可以的话,所谓的暴力检查就是选了这个数字后,去遍历它所在的行、列、九宫格是否存在相同元素,这样子的话其实效率不高,所以这里我们考虑使用我们在 36. 有效的数独 这道题用到的布尔值数组判断的技巧,相当于哈希表的功能,起到了空间换时间的效果!
如下图所示,这是填数独的决策树:
可以看到我们仍然需要对每个位置进行暴力搜索,也就是两层 for
循环,当判断当前数字没问题之后,则递归到下一层去进行暴力搜索,此时因为我们在上一层会先将该数字填入表中,所以下一层进来的时候就是遍历到上一层数字的后面!如果此时 发现枚举了 1~9
数字之后都无法满足数独要求,此时说明上面某一层的策略是错的,则让当前向上返回一个 false
(注意不是返回空,而是需要一个布尔值!),这样子当上一层发现接收到的是 false
的时候,此时就需要进行回溯处理,恢复现场,执行下一个数字的递归判断!
这也就说明了 递归函数头在设计的时候,必须是 bool
值类型返回值,它和 void
的区别就在于 void
类型返回的话上一层不知道下一层是否成功,则会往下执行,进行恢复现场的操作,但是我们的需求是如果下一层成功的返回了,那么我们就不需要进行恢复现场的操作,因为这道题最终就是要让整个表填满,这就是为什么需要 bool
值作为返回值的原因,而不能是 void
类型!
可能直接想象有点抽象,下面给出回溯三部曲的操作,如下所示:
// 对当前符合要求的数字进行处理
row[i][num] = col[j][num] = grid