
904. 水果成篮
你正在探访一家农场,农场从左到右种植了一排果树。这些树用一个整数数组 fruits
表示,其中 fruits[i]
是第 i
棵树上的水果 种类 。
你想要尽可能多地收集水果。然而,农场的主人设定了一些严格的规矩,你必须按照要求采摘水果:
- 你只有 两个 篮子,并且每个篮子只能装 单一类型 的水果。每个篮子能够装的水果总量没有限制。
- 你可以选择任意一棵树开始采摘,你必须从 每棵 树(包括开始采摘的树)上 恰好摘一个水果 。采摘的水果应当符合篮子中的水果类型。每采摘一次,你将会向右移动到下一棵树,并继续采摘。
- 一旦你走到某棵树前,但水果不符合篮子的水果类型,那么就必须停止采摘。
给你一个整数数组 fruits
,返回你可以收集的水果的 最大 数目。
示例 1:
输入:fruits = [1,2,1]
输出:3
解释:可以采摘全部 3 棵树。
示例 2:
输入:fruits = [0,1,2,2]
输出:3
解释:可以采摘 [1,2,2] 这三棵树。
如果从第一棵树开始采摘,则只能采摘 [0,1] 这两棵树。
示例 3:
输入:fruits = [1,2,3,2,2]
输出:4
解释:可以采摘 [2,3,2,2] 这四棵树。
如果从第一棵树开始采摘,则只能采摘 [1,2] 这两棵树。
示例 4:
输入:fruits = [3,3,3,1,2,1,1,2,3,3,4]
输出:5
解释:可以采摘 [1,2,1,1,2] 这五棵树。
提示:
1 <= fruits.length <= 105
0 <= fruits[i] < fruits.length
思路:滑动窗口
滑动窗口也可以理解为双指针法的一种!只不过这种解法更像是一个窗口的移动,所以叫做滑动窗口更适合一些。
实现滑动窗口,主要确定如下三点:
-
窗口内是什么?
-
如何移动窗口的起始位置?
-
如何移动窗口的结束位置?
对于本题:
- 窗口-> 果树的类型
- 如何移动窗口的起始位置-> 数组开始位置即可设置为滑动窗口开始的位置,当窗口内果树类型大于
2
时,窗口左侧向右移动,也就是收缩窗口,收缩到什么时候为止呢?果树类型小于2
为止。 - 如何移动窗口的结束位置-> 遍历数组的指针即可设置为滑动窗口结束的位置,当窗口内果树类型小于等于
2
时,窗口右侧向右移动,也就是扩大窗口,扩大到什么时候为止呢?果树类型大于2
为止。
值得注意的是,如何高效快捷的统计窗口中果树的类型,以及同种类型果树在当前窗口存在多少呢❓❓❓
因为我们在收缩窗口的时候,要收缩到果树类型小于 2
才能停止。面对这种同类型数量统计问题或者是查重问题,哈希表是不二之选。因为数据范围比较小,所以我们定义一个数组来充当哈希表,以树的类型为键,转换到我们简易哈希表中就是对应下标,然后记录相同类型树的数目即可,这样子可以节省很多时间去调用哈希表的 erase
!
算法流程:
- 初始化一个数组充当哈希表
hash
来统计窗口内水果的种类和数量,初始化一个变量count
来记录窗口中水果类型的数量; - 初始化变量:左右指针
left = 0
,right = 0
,记录结果的变量maxlen = 0
; - 当
right
小于数组大小的时候,一直执行下列循环:- 将当前水果放入哈希表中;
- 判断当前水果进来后,哈希表的大小:
- 如果水果类型超过
2
:- 将左侧元素滑出窗口,并且在哈希表中将该元素的频次减一;
- 如果这个元素的频次减一之后变成了
0
,就把该元素从哈希表中删除; - 重复上述两个过程,直到哈希表中的大小不超过
2
;
- 如果水果类型超过
- 更新结果
maxlen
right++
,让下一个元素进入窗口;
- 循环结束后,
maxlen
存的就是最终结果。
class Solution {
public:
int totalFruit(vector<int>& fruits) {
int count = 0; // 窗口中水果类型的数量
int left = 0;
int maxlen = 0;
int hash[100001] = { 0 }; // 哈希表,用于存放窗口中水果类型以及个数
for(int right = 0; right < fruits.size(); ++right)
{
// 进窗口
if(hash[fruits[right]] == 0) // 只有没出现过的水果才count++
count++;
hash[fruits[right]]++; // 出现次数++
// 出窗口
while(count > 2)
{
hash[fruits[left]]--;
if(hash[fruits[left]] == 0)
count--;
left++;
}
// 更新结果
maxlen = max(maxlen, right - left + 1);
}
return maxlen;
}
};
```