大家在数据结构中都学习到各种排序的方法,下面是关于js排序的几种方法,跟C语言数据结构中讲的大同小异,希望能够对大家的工作和学习有所帮助
1、直接插入排序基本思想
假设待排序的记录存放在数组R[1..n]中。初始时,R[1]自成1个有序区,无序区为R[2..n]。从i=2起直至i=n为止,依次将R[i]插入当前的有序区R[1..i-1]中,生成含n个记录的有序区。
算法描述
function InsertSort(arr) { //插入排序->直接插入法排序
var st = new Date();
var temp, j;
for(var i=1; i<arr.length; i++) {
if((arr[i]) < (arr[i-1])) {
temp = arr[i];
j = i-1;
do {
arr[j+1] = arr[j];
j--;
}
while (j>-1 && (temp) < (arr[j]));
arr[j+1] = temp;
}//endif
}
status = (new Date() - st) + ' ms';
return arr;
}
2、希尔排序基本思想
先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为dl的倍数的记录放在同一个组中。先在各组内进行直接插人排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。
该方法实质上是一种分组插入方法。
算法描述
function ShellSort(arr) { //插入排序->希儿排序
var st = new Date();
var increment = arr.length;
do {
increment = (increment/3|0) + 1;
arr = ShellPass(arr, increment);
}
while (increment > 1)
status = (new Date() - st) + ' ms';
return arr;
}
function ShellPass(arr, d) { //希儿排序分段执行函数
var temp, j;
for(var i=d; i<arr.length; i++) {
if((arr[i]) < (arr[i-d])) {
temp = arr[i]; j = i-d;
do {
arr[j+d] = arr[j];
j = j-d;
}
while (j>-1 && (temp) < (arr[j]));
arr[j+d] = temp;
}//endif
}
return arr;
}
3、冒泡排序基本思想
将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为R[i].key的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上"飘浮"。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。
算法描述
function BubbleSort(arr) { //交换排序->冒泡排序
var st = new Date();
var temp;
var exchange;
for(var i=0; i<arr.length; i++) {
exchange = false;
for(var j=arr.length-2; j>=i; j--) {
if((arr[j+1]) < (arr[j])) {
temp = arr[j+1];
arr[j+1] = arr[j];
arr[j] = temp;
exchange = true;
}
}
if(!exchange) break;
}
status = (new Date() - st) + ' ms';
return arr;
}
4、快速排序基本思想
将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。
在R[low..high]中任选一个记录作为基准(Pivot),以此基准将当前无序区划分为左、右两个较小的子区间R[low..pivotpos-1)和R[pivotpos+1..high],并使左边子区间中所有记录的关键字均小于等于基准记录(不妨记为pivot)的关键字pivot.key,右边的子区间中所有记录的关键字均大于等于pivot.key,而基准记录pivot则位于正确的位置(pivotpos)上,它无须参加后续的排序。
算法描述
function QuickSort(arr) { //交换排序->快速排序
if (arguments.length>1) {
var low = arguments[1];
var high = arguments[2];
} else {
var low = 0;
var high = arr.length-1;
}
if(low < high){
// function Partition
var i = low;
var j = high;
var pivot = arr[i];
while(i<j) {
while(i<j && arr[j]>=pivot)
j--;
if(i<j)
arr[i++] = arr[j];
while(i<j && arr[i]<=pivot)
i++;
if(i<j)
arr[j--] = arr[i];
}//endwhile
arr[i] = pivot;
// end function
var pivotpos = i; //Partition(arr,low,high);
QuickSort(arr, low, pivotpos-1);
QuickSort(arr, pivotpos+1, high);
} else
return;
return arr;
}
5、直接选择排序基本思想
n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:
①初始状态:无序区为R[1..n],有序区为空。
②第1趟排序
在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
……
③第i趟排序
第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R[i..n](1≤i≤n-1)。该趟排序从当前无序区中选出关键字最小的记录R[k],将它与无序区的第1个记录R[i]交换,使R[1..i]和R[i+1..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。
算法描述
function SelectSort(arr) { //选择排序->直接选择排序
var st = new Date();
var temp;
for(var i=0; i<arr.length; i++) {
var k = i;
for(var j=i+1; j<arr.length; j++) {
if((arr[j]) < (arr[k]))
k = j;
}
if (k != i){
temp = arr[i];
arr[i] = arr[k];
arr[k] = temp;
}
}
status = (new Date() - st) + ' ms';
return arr;
}
1、直接插入排序基本思想
假设待排序的记录存放在数组R[1..n]中。初始时,R[1]自成1个有序区,无序区为R[2..n]。从i=2起直至i=n为止,依次将R[i]插入当前的有序区R[1..i-1]中,生成含n个记录的有序区。
算法描述
function InsertSort(arr) { //插入排序->直接插入法排序
var st = new Date();
var temp, j;
for(var i=1; i<arr.length; i++) {
if((arr[i]) < (arr[i-1])) {
temp = arr[i];
j = i-1;
do {
arr[j+1] = arr[j];
j--;
}
while (j>-1 && (temp) < (arr[j]));
arr[j+1] = temp;
}//endif
}
status = (new Date() - st) + ' ms';
return arr;
}
2、希尔排序基本思想
先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为dl的倍数的记录放在同一个组中。先在各组内进行直接插人排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。
该方法实质上是一种分组插入方法。
算法描述
function ShellSort(arr) { //插入排序->希儿排序
var st = new Date();
var increment = arr.length;
do {
increment = (increment/3|0) + 1;
arr = ShellPass(arr, increment);
}
while (increment > 1)
status = (new Date() - st) + ' ms';
return arr;
}
function ShellPass(arr, d) { //希儿排序分段执行函数
var temp, j;
for(var i=d; i<arr.length; i++) {
if((arr[i]) < (arr[i-d])) {
temp = arr[i]; j = i-d;
do {
arr[j+d] = arr[j];
j = j-d;
}
while (j>-1 && (temp) < (arr[j]));
arr[j+d] = temp;
}//endif
}
return arr;
}
3、冒泡排序基本思想
将被排序的记录数组R[1..n]垂直排列,每个记录R[i]看作是重量为R[i].key的气泡。根据轻气泡不能在重气泡之下的原则,从下往上扫描数组R:凡扫描到违反本原则的轻气泡,就使其向上"飘浮"。如此反复进行,直到最后任何两个气泡都是轻者在上,重者在下为止。
算法描述
function BubbleSort(arr) { //交换排序->冒泡排序
var st = new Date();
var temp;
var exchange;
for(var i=0; i<arr.length; i++) {
exchange = false;
for(var j=arr.length-2; j>=i; j--) {
if((arr[j+1]) < (arr[j])) {
temp = arr[j+1];
arr[j+1] = arr[j];
arr[j] = temp;
exchange = true;
}
}
if(!exchange) break;
}
status = (new Date() - st) + ' ms';
return arr;
}
4、快速排序基本思想
将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。
在R[low..high]中任选一个记录作为基准(Pivot),以此基准将当前无序区划分为左、右两个较小的子区间R[low..pivotpos-1)和R[pivotpos+1..high],并使左边子区间中所有记录的关键字均小于等于基准记录(不妨记为pivot)的关键字pivot.key,右边的子区间中所有记录的关键字均大于等于pivot.key,而基准记录pivot则位于正确的位置(pivotpos)上,它无须参加后续的排序。
算法描述
function QuickSort(arr) { //交换排序->快速排序
if (arguments.length>1) {
var low = arguments[1];
var high = arguments[2];
} else {
var low = 0;
var high = arr.length-1;
}
if(low < high){
// function Partition
var i = low;
var j = high;
var pivot = arr[i];
while(i<j) {
while(i<j && arr[j]>=pivot)
j--;
if(i<j)
arr[i++] = arr[j];
while(i<j && arr[i]<=pivot)
i++;
if(i<j)
arr[j--] = arr[i];
}//endwhile
arr[i] = pivot;
// end function
var pivotpos = i; //Partition(arr,low,high);
QuickSort(arr, low, pivotpos-1);
QuickSort(arr, pivotpos+1, high);
} else
return;
return arr;
}
5、直接选择排序基本思想
n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:
①初始状态:无序区为R[1..n],有序区为空。
②第1趟排序
在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R[1]交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
……
③第i趟排序
第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R[i..n](1≤i≤n-1)。该趟排序从当前无序区中选出关键字最小的记录R[k],将它与无序区的第1个记录R[i]交换,使R[1..i]和R[i+1..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。
这样,n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果。
算法描述
function SelectSort(arr) { //选择排序->直接选择排序
var st = new Date();
var temp;
for(var i=0; i<arr.length; i++) {
var k = i;
for(var j=i+1; j<arr.length; j++) {
if((arr[j]) < (arr[k]))
k = j;
}
if (k != i){
temp = arr[i];
arr[i] = arr[k];
arr[k] = temp;
}
}
status = (new Date() - st) + ' ms';
return arr;
}