1.A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble numbers.
有一点没有注意到 就是 其实每一个丑数只能由2,3,5或7 乘以某一个丑数得来
这一点很重要 由于每个数都可以分解为质数相乘 而丑数又要求只能用 2,3,5 or 7
所以丑数完全分解下来只有2,3,5或7 剩下来
所以丑数*丑数或者丑数*2,3,5或7 一定是丑数而且也就只有这些是丑数
引用https://www.cnblogs.com/yechanglv/p/6941971.html
首先,第一个丑数为“1”,后面的每一个丑数都是由前一个丑数乘2、3、5或7而来,那么后一个丑数就是前一个乘这四个数得到的最小值,for example:第一个:1,第二个:1*2、1*3、1*5或1*7,显然为2,第三个:2*2,1*3,1*5或1*7,显然是3,第四个:2*2,,2*3,1*5,1*7为4,第五个:3*2,2*3,1*5,1*7……
int p2,p3,p5,p7;
p2=p3=p5=p7=1;
a[1]=1;
while(n<5843)//枚举5842个丑数,放在数组a里。
{
a[++n]=min4(2*a[p2],3*a[p3],5*a[p5],7*a[p7]);//从现在枚举的4个丑数里,先选择小的放在a里。
if(a[n]==2*a[p2])p2++;//如果a[n]==2*a[p2],证明重复了则执行a[++n]=min4(2*a[p2],3*a[p3],5*a[p5],7*a[p7]);就会得到同一个a[n] 所以要将p2++,使数变大
if(a[n]==3*a[p3])p3++;//同理。
if(a[n]==5*a[p5])p5++;//同理。
if(a[n]==7*a[p7])p7++;//同理。
}