问题描述
幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成
。首先从1开始写出自然数1,2,3,4,5,6,....
1 就是第一个幸运数。
我们从2这个数开始。把所有序号能被2整除的项删除,变为:
1 _ 3 _ 5 _ 7 _ 9 ....
把它们缩紧,重新记序,为:
1 3 5 7 9 .... 。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11, 17, ...
此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,...)
最后剩下的序列类似:
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, ...
输入格式
输入两个正整数m n, 用空格分开 (m < n < 1000*1000)
输出格式
程序输出 位于m和n之间的幸运数的个数(不包含m和n)。
样例输入1
1 20
样例输出1
5
样例输入2
30 69
样例输出2
8
import java.util.*;
public class Main {/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner input=new Scanner(System.in);
int m=input.nextInt();
int n=input.nextInt();
int num[]=new int[n];
int count=0;
for(int i=0;i<n;i++)
{
num[i]=i*2+1;
}
df(num,1,n);
for(int i=1;i<n&& num[i]<=n ;i++)
{
if(num[i]>m && num[i]<n)
{
count++;
}
}
System.out.println(count);
}
public static void df(int num[],int start,int end)
{
int k=start;
int x=num[start];
for(int i=k;i<end;i++)
{
if((i+1)%x!=0)
{
num[k++]=num[i];
}
}
if(x<end)
{
df(num,start+1,end);
}
}
}