一、匿名函数
1.匿名函数
本质还是函数(除了定义函数的语法以外的函数相关内容都是适用于匿名函数)
语法:
函数名 = lambda 形参列表: 返回值
相当于:
def 函数名(形参列表):
return 返回值
案例:写一个匿名函数求任意两个数的和
sum2 = lambda num1, num2: num1 + num2
print(sum2(10, 20))
案例:写一个匿名函数求任意三个整数的个位数的和
sum3 = lambda num1, num2, num3: num1 % 10 + num2 % 10 + num3 % 10
print(sum3(12, 23, 34))
二、高阶函数
实参高阶函数和返回值高阶函数
实参高阶:参数是函数的函数
返回值高阶函数:返回值是函数的函数
1.函数的参数的确定方法
# x可以传任何数据
def func1(x):
print(x)
# x可以传int str float list bool 元组
def func2(x):
print(x * 2)
# x可以传列表、字符串、元组、字典
def func3(x):
print(x[1])
# x只能传列表
def func4(x):
print(x.append(100))
1)func5、func6是一个实参高阶函数
# x必须是不需要传参就可以调用的函数
def func5(x):
print(x())
# x必须是一个可以接收两个实参的函数,并且函数的返回值是数字
def func6(x):
print(x(10, 20) + 30)
2)func7是一个返回值高阶函数
def func7():
def func8():
print('abc')
return func8()
三、常见的实参高阶函数
注意:函数的参数入轨是函数,提供实参方式有两种:1.直接使用匿名函数 2.使用普通函数的函数名
1.max,min,sorted(sort)
1)max(序列) ---- 直接比较序列中元素的大小求最大值
2)max(序列, key=函数) ---- 根据函数指定的比较规则比较序列中元素的大小获取最大值
函数要求:a.有且只有一个参数(代表序列中的每个元素)
b.需要一个返回值(返回值代表比较对象 ---- 将参数看成序列中的元素,返回值对应的位置描述清楚比较对象和元素之间的关系)
1)求nums中
nums = [19, 23, 90, 34, 56, 78]
print(max(nums))
2)求nums中个位数最大的元素
nums = [19, 23, 90, 34, 56, 78]
print(max(nums, key=lambda item: item % 10))
3)求nums中绝对值最大的元素
# 补充:abs(数据) - 返回数据的绝对值
nums = [19, 23, -90, 34, -56, 78]
print(max(nums, key=lambda item: item**2))
4)求students中分数最高的学生
students = [
{'name': '小明', 'age': 19, 'score': 73},
{'name': '小红', 'age': 22, 'score': 99},
{'name': '小花', 'age': 32, 'score': 80},
{'name': '张三', 'age': 20, 'score': 77}
]
print(max(students, key=lambda item: item['score']))
5)按照年龄的大小对students中元素从小到大排序
print(sorted(students, key=lambda item: item['age']))
6)将names中所有的元素按照每个名字的长度从大到小排序
names = ['路飞', '乌索布', '索罗', '鲁班7号', '烬']
print(sorted(names, key=lambda item: len(item), reverse=True))
7)求nums中各个位数之和最大的元素
nums = [123, 98, 562, 90, 990, 1000]
print(max(nums, key=lambda n: sum(int(x) for x in str(n))))
def max_num(n):
s = 0
for i in str(n):
s += int(i)
return s
print(max(nums, key=max_num))
2.map - 基于原序列中的元素通过制定的规则创建一个新的序列
-
map(函数, 序列)
函数的要求:
a.有且只有一个参数(代表序列中的每个元素)
b.有一个返回值(就是新序列中的元素 - 在这儿通过参数来描述新序列中的元素和原序列中元素的关系) -
map(函数, 序列1, 序列2)
函数的要求:
a.有且只有2个参数(代表序列中的每个元素)
b.有一个返回值(就是新序列中的元素 - 在这儿通过参数来描述新序列中的元素和原序列中元素的关系) -
map(函数, 序列1, 序列2, 序列3)
函数的要求:
a.有且只有3个参数(代表序列中的每个元素)
b.有一个返回值(就是新序列中的元素 - 在这儿通过参数来描述新序列中的元素和原序列中元素的关系)
map(函数, 序列1, 序列2, 序列3…)
案例:将nums中所有的元素乘以2
nums = [19, 23, 90, 34, 56, 78]
result = map(lambda item: item * 2, nums)
print(list(result))
练习:使用map函数提取nums中所有元素的十位数
nums = [68, 1023, 23.34, 145.89, 192]
# [6, 2, 2, 4, 9]
result1 = map(lambda item: int(item) // 10 % 10, nums)
print(list(result1))
练习2:将学科和班号合并成班级名称
subjects = ['Python', 'java', 'h5']
nums = [2206, 2214, 2219]
# ['python2206', 'java2214', 'h52219]
result2 = map(lambda item1, item2: item1 + str(item2), subjects, nums)
print(list(result2))
练习3:根据提供的学生信息,创建学生字典
names = ['张三', '李四', '王五', '小明']
genders = ['男', '女', '男', '男']
tels = ['1110', '12091', '27181', '18231']
# [{'name': '张三', 'gender':'男', 'tel': '1110'}, ....]
result3 = map(lambda item1, item2, item3: {'names': item1, 'gender': item2, 'tel': item3}, names, genders, tels)
print(list(result3))
练习4:使用map函数来创建字典
keys = ['name', 'age', 'gender', 'tel']
values = ['小明', 18, '男', '110']
# {'name': '小明', 'age': 18, ...}
result3 = map(lambda item1, item2: (item1, item2), keys, values)
print(dict(result3))
练习5:使用map函数将nums中所有的偶数除以2,所有的奇数乘以2
nums = [1, 4, 5, 7, 8]
# [2, 2, 10, 14, 4]
result4 = map(lambda i: i // 2 if i % 2 == 0 else i * 2, nums)
print(list(result4))
3.reduce - 将序列中所有的元素合并成一个数据
reduce(函数, 序列, 初始值) - 将序列中的元素按照函数制定的规则合并成一个数据
函数的要求:a.有且只有两个参数(第一个参数只向初始值,第二个参数代表序列中的每个元素)
b.有一个返回值(用来描述合并规则)
案例:求nums中所有元素的和
from functools import reduce
nums = [12, 30, 89, 76, 55]
# 12 + 30 + 89 + 76 + 55
result = reduce(lambda i, item: i+item, nums, 0)
print(result)
案例:求nums中所有元素的乘积
nums1 = [12, 30, 89, 76, 55]
# 12 * 30 * 89 * 76 * 55
result = reduce(lambda i, item: i*item,nums1,1)
print(result)
案例:求nums中所有元素的个位数和
nums2 = [12, 30, 89, 76, 55]
# 2+0+9+6+5
result = reduce(lambda i, item: i+item%10, nums2, 0)
print(result)
案例:将nums中所有元素合并成一个数字
nums3 = [12, 30, 89, 76, 55]
# 1230897655
result = reduce(lambda i, item: i+str(item), nums3, '')
print(result)
案例:将list1中所有字符串的最后一个字符合并成一个新中字符串
list1 = ['anm', 'abc', 'hello', 'world']
# 'mcod'
result = reduce(lambda i, item: i+item[-1], list1, '')
print(result)
4.filter(自学)
四、迭代器
1.什么是迭代器(iter)
容器型数据类型:
迭代器作为容器打印的时候无法显示元素;无法通过len获取迭代器中的个数;
如果要使用迭代器中的元素必须将元素从迭代器中取出来,而且一旦取出来就无法再放回去。
2.怎么创建迭代器
1)将其他序列转换成迭代器
2)创建生成器
a = iter('abc')
b = iter([10, 20, 30, 40])
3.怎么获取迭代器中的元素
注意:不管以什么方式获取到了迭代器中的元素,对应的元素一定会从迭代器中消失
1)查单个:next(迭代器)
print(next(a)) # a
print(next(a)) # b
print(next(a)) # c
# print(next(a)) # 报错!
2)遍历
for x in b:
print(x)
五、生成器
1.什么是生成器
容器型数据类型(生成器作为容器不具备同时保存多个数据的能力,具备的是创建多个数据的能力)
打印生成器也无法查看生成器中的元素;生成器无法统计个数;
获取生成器中的元素,也是取一个少一个。(生成器获取元素的方法和迭代器一样)
2.怎么创建生成器
调用带有yield关键字的函数就可以得到一个生成器
def func1():
print('abc')
yield
return 100
result = func1()
print(f'result:{result}')
3.生成器的元素 - 控制生成器产生数据的个数和产生的值
执行创建生成器的函数的函数体会遇到几次yield,对应的生成器就可以创建多少个数据;
每次遇到yield的时候,yield后面的数据就是这个生成器能够创建的值。
def func2():
for x in range(5):
yield x*2
g2 = func2()
print(next(g2))
print(next(g2))
print(next(g2))
print(next(g2))