目标检测——PP-YOLOE算法解读

本文分析了PP-YOLO系列算法,从PP-YOLO到PP-YOLOE-R,着重介绍了PP-YOLOE的改进,包括anchor-free设计、更强的backbone和neck结构,以及任务一致性学习(TAL)的应用。实验结果显示,PP-YOLOE在性能和速度上与YOLOv5和YOLOX相比有竞争力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PP-YOLO系列,均是基于百度自研PaddlePaddle深度学习框架发布的算法,2020年基于YOLOv3改进发布PP-YOLO,2021年发布PP-YOLOv2和移动端检测算法PP-PicoDet,2022年发布PP-YOLOE和PP-YOLOE-R。由于均是一个系列,所以放一起解读,方便对比前后改进地方。


YOLO系列算法解读:
YOLOv1通俗易懂版解读SSD算法解读YOLOv2算法解读YOLOv3算法解读YOLOv4算法解读YOLOv5算法解读YOLOR算法解读YOLOX算法解读YOLOv6算法解读YOLOv7算法解读YOLOv8算法解读YOLOv9算法解读YOLOv10算法解读

PP-YOLO系列算法解读:
PP-YOLO算法解读PP-YOLOv2算法解读PP-PicoDet算法解读PP-YOLOE算法解读PP-YOLOE-R算法解读



PP-YOLOE(2022.3.30)

论文:PP-YOLOE: An evolved version of YOLO
作者:Shangliang Xu, Xinxin Wang, Wenyu Lv, Qinyao Chang, Cheng Cui, Kaipeng Deng, Guanzhong Wang, Qingqing Dang, Shengyu Wei, Yuning Du, Baohua Lai
链接:https://arxiv.org/abs/2203.16250
代码:https://github.com/PaddlePaddle/PaddleDetection


1、算法概述

基于PP-YOLOv2进行改进,PP-YOLOE是一个anchor-free算法(受到YOLOX算法影响),用了更强的backbone,带CSPRepResStage的neck和ET-head,并且利用了TAL标签分配算法。为了更好的适配各种硬件平台,PP-YOLOE避免使用可变形卷积和Matrix NMS,而且PP-YOLOE提供s/m/l/x四个版本的网络模型以适应各个平台应用。PP-YOLOE-l在Tesla V100平台上实现了COCO test-dev集51.4%mAP和78.1FPS。若是将模型转换为TensorRT并且以FP16精度进行推理,可实现149.2FPS。与现如今最新算法的对比情况如下图所示:
在这里插入图片描述


2、PP-YOLOE细节

PP-YOLOE的整个网络框架如下所示,整个算法是anchor-free的,主干部分为CSPRepResNet,neck部分为PAN,head部分为ET-head(Efficient Task-aligned head)。
在这里插入图片描述
改进的地方:

  • Anchor-free: 受到FCOS[1]算法的启发,PP-YOLOE将PP-YOLOv2的标签匹配规则替换为了anchor-free,这种改进使得模型更快但是掉了0.3%mAP。
  • Backbone和Neck: 受到YOLOv5[2]和YOLOX[3]等网络借鉴CSPNet[4]带来的提升效果,作者也在backbone和neck中应用了RepResBlock。其结构如下图所示:
    在这里插入图片描述
    图(a)是TreeNet中的TreeBlock结构,图(b)是本文中RepResBlock在训练阶段的结构,图©是RepResBlock在推理阶段的结构,即该模块被重参数化后的样子,这来源于RepVGG[5],图(d)是CSPRepResStage的结构,将CSP与RepResBlock结合就是CSPRepResStage,作者将其应用在Backbone中,neck部分是RepResBlock和CSPRepResStage混合用的。
    除此之外,作者根据网络宽度和深度设置不同比例得到不同规模的网络结构s/m/l/x,如下表:
    在这里插入图片描述
  • 任务一致性学习(Task Alignment Learning, TAL): YOLOX采用SimOTA来作为标签分配策略,为了进一步克服分类与定位的错位,TOOD[6]提出了任务一致性学习(TAL),它由动态标签分配和任务对齐损失组成的。多态标签分配意味着预测和当前损失是相关的,根据预测,为每个真值标签动态调整分配的正锚点个数。
    通过显式地对齐这两个任务,TAL可以同时获得最高的分类分数和最精确的边界框。TAL示意图如下(图片来自TOOD论文):
    在这里插入图片描述
  • 高效的任务一致检测头(Efficient Task-aligned Head, ET-head): YOLOX的方法,解耦头部提升了检测器性能,但解耦的头部可能会使分类和定位任务分离和独立,缺乏针对任务的学习。作者使用ESE模块来代替TOOD中的层注意力,TOOD论文提出的T-Head结构如下所示,详细结构见上面PP-YOLOE网络细节。
    在这里插入图片描述

3、实验

与现如今最新检测算法在COCO2017 test-dev上的结果比较如下表所示:
在这里插入图片描述
从表中可以看出,相同图片输入尺寸下,PP-YOLOE算法的AP指标要好于YOLOv5和YOLOX,且在没转TensorRT情况下速度相当,在转为TensorRT情况下,YOLOv5的FPS稍快,PP-YOLOE居中,YOLOX最慢。


参考文献:
[1] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF international conference on computer vision, pages 9627–9636, 2019.2
[2] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec, NanoCode012, Yonghye Kwon, TaoXie, Jiacong Fang, imyhxy, Kalen Michael, Lorna, Abhiram V, Diego Montes, Jebastin Nadar, Laughing, tkianai, yxNONG, Piotr Skalski, Zhiqiang Wang, Adam Hogan, Cristi Fati, Lorenzo Mammana, AlexWang1900, Deep Patel, Ding Yiwei, Felix You, Jan Hajek, Laurentiu Diaconu, and Mai Thanh Minh. ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference, Feb. 2022. 1, 2, 4, 5
[3] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430, 2021. 1, 2, 4, 5
[4] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and I-Hau Yeh. Cspnet: A new backbone that can enhance learning capability of cnn. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pages 390–391, 2020. 2
[5] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han, Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13733–13742, 2021. 2
[6] Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott, and Weilin Huang. Tood: Task-aligned one-stage object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 3510–3519, 2021. 3, 4

<think>好的,我现在需要帮助用户查找关于Traefik插件的使用说明、配置和示例。首先,用户提到他们想了解与Traefik插件相关的信息,特别是使用说明、配置和示例。根据用户提供的引用内容,我需要整理这些信息,并按照用户的要求进行结构化回答。 首先,我要回顾用户提供的引用内容。引用[1]提到了在静态配置文件中添加插件的配置示例,引用[3]和[5]介绍了GitHub上的示例插件demo,说明插件是通过Yaegi动态执行的,并提到了开发指南。引用[4]提到了使用Helm chart部署Traefik,这可能与插件的安装有关。引用[2]可能是一个Terraform的示例,但具体内容不明确,暂时可能用不上。 接下来,我需要确定用户的需求:他们需要知道如何配置和使用Traefik插件,包括具体的步骤和示例。根据引用内容,可以分步骤说明配置方法,比如静态配置文件中的设置,以及插件的开发或使用现有插件的步骤。可能还需要提到动态加载和注意事项,如实验性功能、版本兼容性等。 需要确保回答符合用户的要求,结构清晰,分步骤说明。同时,要引用提供的引用内容,正确标注引用标识。例如,引用[1]中的配置示例,引用[3]关于GitHub仓库的信息,引用[4]提到的Helm安装方法,以及引用[5]的项目介绍部分。 另外,用户可能对插件的实际应用场景和如何开发自己的插件感兴趣,所以可能需要包含这些信息。还要生成相关问题,如如何开发自定义插件、动态加载机制、性能影响等。 需要注意的是,用户提供的引用中有部分内容可能不直接相关,比如引用[2]的Terraform示例,但如果没有更相关的信息,可以暂时忽略。确保回答中的引用准确对应到相关的部分。 总结回答结构: 1. 插件配置步骤,包括静态配置文件示例和Helm安装。 2. 使用现有插件的步骤,比如demo插件的安装。 3. 开发自定义插件的基本流程。 4. 注意事项,如实验性功能、版本要求等。 5. 相关问题部分,生成相关问题。 现在需要将这些信息整合成自然的中文回答,正确引用来源,并确保LaTeX格式符合要求,虽然用户的问题可能不涉及数学公式,但如果有变量或代码,需要使用正确的格式。例如,配置示例中的代码块需要用反引号包裹,并注明语言类型。 检查是否有遗漏的信息,比如引用[3]提到的Yaegi解释器,可能需要解释动态加载机制。同时,引用[5]提到插件是扩展Traefik功能的强大工具,可以用于流量管理,这部分可以在应用场景中提及。 最后,生成的相关问题需要与Traefik插件的使用、开发、配置相关,确保问题有针对性,能够引导用户进一步探索。</think>### Traefik 插件使用说明与配置示例 #### 1. 插件配置基础步骤 Traefik 插件通过静态配置文件或动态加载实现。以下为静态配置示例(需在 Traefik 的 YAML 配置文件中添加): ```yaml experimental: localPlugins: example: moduleName: github.com/traefik/plugindemo # 插件模块路径[^1] ``` 此配置声明了一个名为 `example` 的本地插件,指向 GitHub 上的示例仓库[^3]。 若使用 Helm 安装 Traefik,需在 `values.yaml` 中启用插件支持: ```yaml experimental: plugins: enabled: true # 启用插件功能[^4] ``` #### 2. 使用现有插件(以 demo 插件为例) 1. **安装插件** 通过修改 Traefik 部署配置,将插件代码编译到 Traefik 二进制文件中,或通过动态加载(需 Yaegi 支持)。 2. **配置路由规则** 在 `IngressRoute` 中引用插件: ```yaml apiVersion: traefik.io/v1alpha1 kind: Middleware metadata: name: demo-plugin spec: plugin: example: # 插件名称 headerName: "X-Custom-Header" headerValue: "Hello from Plugin" ``` #### 3. 开发自定义插件 1. **代码结构** 遵循 Traefik 插件接口规范,实现 `New` 初始化方法和 `Handle` 请求处理逻辑[^3]。 2. **动态加载** 利用 Yaegi 解释器实时加载插件(无需重启 Traefik): ```go // 示例插件逻辑 func New(ctx context.Context, config *Configuration) (http.Handler, error) { return &demoPlugin{config}, nil } ``` #### 4. 注意事项 - **实验性功能**:插件功能标记为实验性,需在配置中显式启用[^4]。 - **版本兼容性**:确认 Traefik 版本支持插件(建议 v2.3+)[^4]。 - **安全限制**:动态加载插件需注意代码安全性,建议审核第三方插件[^5]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值