一:必须要清楚的等价意义。
1,连续:极限值等于函数值。
2,可导:极限值存在,并且左极限等于有极限。
3,可微:函数在该点关于x,y的偏导数存在,且函数在该点连续。
4,解析:可微,满足柯西黎曼方程。
二:要掌握的关系。
1,连续不一定可导,但可到一定连续。
2,在一点处,可导不一定解析,但解析一定可导;在区域内,可导就解析,解析就可导。
3,对于一元函数,可导与可微等价。
4,函数的微分与自变量的微分的商等于该函数的导数。
三:需要了解的几何意义。
1,导数:该点切线的斜率。
2,微分:曲面上点沿任意方向的可导性。
,3,积分:曲线与x轴的面积。
四:经典例题。