ccf 网络延时(dfs)

问题描述
  给定一个公司的网络,由n台交换机和m台终端电脑组成,交换机与交换机、交换机与电脑之间使用网络连接。交换机按层级设置,编号为1的交换机为根交换机,层级为1。其他的交换机都连接到一台比自己上一层的交换机上,其层级为对应交换机的层级加1。所有的终端电脑都直接连接到交换机上。
  当信息在电脑、交换机之间传递时,每一步只能通过自己传递到自己所连接的另一台电脑或交换机。请问,电脑与电脑之间传递消息、或者电脑与交换机之间传递消息、或者交换机与交换机之间传递消息最多需要多少步。
输入格式
  输入的第一行包含两个整数n, m,分别表示交换机的台数和终端电脑的台数。
  第二行包含n - 1个整数,分别表示第2、3、……、n台交换机所连接的比自己上一层的交换机的编号。第i台交换机所连接的上一层的交换机编号一定比自己的编号小。
  第三行包含m个整数,分别表示第1、2、……、m台终端电脑所连接的交换机的编号。
输出格式
  输出一个整数,表示消息传递最多需要的步数。
样例输入
4 2
1 1 3
2 1
样例输出
4
样例说明
  样例的网络连接模式如下,其中圆圈表示交换机,方框表示电脑:

  其中电脑1与交换机4之间的消息传递花费的时间最长,为4个单位时间。
样例输入
4 4
1 2 2
3 4 4 4
样例输出
4
样例说明
  样例的网络连接模式如下:

  其中电脑1与电脑4之间的消息传递花费的时间最长,为4个单位时间。
评测用例规模与约定
  前30%的评测用例满足:n ≤ 5, m ≤ 5。
  前50%的评测用例满足:n ≤ 20, m ≤ 20。
  前70%的评测用例满足:n ≤ 100, m ≤ 100。

  所有评测用例都满足:1 ≤ n ≤ 10000,1 ≤ m ≤ 10000。


确实是很简单的一道题目,直接用dfs搜索,然后用递归,可以很简单的做出来。

还有一点,知道为什么你的得分总是80到90吗?因为你的数组不够大,总之ccf差不多没有内存限制,你给我不要命的把数组大小放大,然后就正确了。


我简单的说一下思路,我下面的算法不见得最优,但是足够了。暂且把交换机和电脑都称作节点吧,所谓的节点之间传递消息最多需要的步数,你可以理解为从某个节点出发,该节点深度最深的两棵子树的深度之和。你可以验证一下。当然,这里的节点可以是图中的任意一个节点。

这个题目里的图是简化版的图,你可以认为是多叉树,所以我这里就不用mark已经访问过的节点了。

#include <iostream>
#include <algorithm>
using namespace std;
const int SIZE = 20001;
const int ADJ_NUM = 1550;
enum kind{
	sw, // 交换机 
	pc // 电脑 
};
struct _node{
	int mark_num; // 标号
	int flag; 
	int adj[ADJ_NUM];
	int adj_num;
};
int n_answer[SIZE] = {0};
_node graph[SIZE] = {0};
int visited[SIZE] = {0}; // 标记是否已经访问过了 
int top = 0;
// 这道题目其实很简单,只需要深度搜索即可,查找出深度 
int dfs_visit(int);
void dfs()
{
	dfs_visit(1);
	sort(n_answer, n_answer + top); // 对答案也要进行排序
	cout << n_answer[top - 1] << endl;
}
int dfs_visit(int i) // 这里只需要查询深度即可 
{
	// 从根节点开始往下搜索
	int index = 0;
	int height[ADJ_NUM] = {0};
	while (true)
	{
		int adj = graph[i].adj[index];
		if (adj == 0) break; // 没有了邻接点,所以退出 
		else
		height[index] = dfs_visit(adj); // 访问下层节点 
		index++;
	} 
	if (index == 0)
	{
		n_answer[top++] = 0; // 该节点深度最深的两棵子树的深度之和为0;
		return 1;
	}
		
	if (index == 1)
	{
		n_answer[top++] = 1; //  该节点深度最深的两棵子树的深度之和为1;
		return 1 + height[0];
	}
	else
	{
		sort(height, height + index); // 首先要排序,因为各子树的高度是不一致的
		n_answer[top++] = height[index - 1] + height[index - 2]; //  该节点深度最深的两棵子树的深度之和
		return 1 + height[index - 1]; // 返回这棵子树的深度
	}
}
int main()
{
	int n, m;
	cin >> n >> m;
	int f_n; // 父节点 
	graph[1].mark_num = 1;
	graph[1].flag = sw;
	int top = 2;
	for (int i = 2; i <= n; ++i)
	{
		cin >> f_n;
		graph[f_n].adj[graph[f_n].adj_num++] = top; // top指向当前节点 
		graph[top].mark_num = i; // 标记 
		graph[top].flag = sw; // 类型为交换机 
		top++;
	}
	for (int j = 1; j <= m; ++j)
	{
		cin >> f_n; // 输入父节点的值 
		graph[f_n].adj[graph[f_n].adj_num++] = top; // top指向当前节点 
		graph[top].mark_num = j;
		graph[top].flag = pc; // 这里其实可以省略
		top++;
	}
	dfs();
	system("pause");		
	return 0;
}


©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页