杭电OJ——1024 Max Sum Plus Plus(另类的动态规划!)

Max Sum Plus Plus


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3 ... S n.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
  
  
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

Sample Output
  
  
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
 

这道题目的确很屌!我自问自己做不出来!于是只得参考代码!

这期间,看到过两篇写的比较好的博文,推荐大家去看一看!

一篇在这里:http://blog.sina.com.cn/s/blog_677a3eb30100jxqa.html

另外一篇现在找不到了,不过我参考了他的代码!写的比前一篇容易理解一些!在它的代码的基础上,我又加了一些注释,加入了自己的理解!大家可以看一下我的代码!

这道题递归方程可能比较难以想!其余还好!还要注意空间开销!

废话不多说!发代码!思想全在我写的注释里面,应该还比较详细吧!

#include<iostream>
#include<cstdio>
using namespace std;
const int MAX=1000001;
int dp[2][MAX];
int w[MAX];
int sum[MAX];//不做不知道,一做吓一跳,原来在主函数里开个sum[MAX],是不行的,因为MAX是在太大!

/*这是我的老师贴出的提示!现在才理解到内涵!

VC定义数组时请注意大小!定义时,局部数组大小<=1MB,全局数组<=2GB,定义时如果超过这个限制将会出现如"segment error"之类的错误.以下的程序可以帮助你证明这一点.

以下程序数组如果再大点,运行出错,说明局部变量分配内存<=1MB
#include<stdio.h>
int main()
{
int a[1024*1024/4-4000];
int i;
for(i=0;i<1024*1024/4-4000;i++)
{
a[i]=i;
printf("%d\n",a[i]);
}
return 0;
} 

以下程序数组如果再大点,运行出错,说明全局变量分配内存<=2GB
#include<stdio.h>
int a[1024*1024*470];
int main()
{
long int i;
for(i=0;i<1024*1024*470;i++)
{
a[i]=i;
printf("%d\n",a[i]);
}
return 0;
}


内存的三种分配方式:静态存储区分配,栈上分配,堆上分配。 全局数组是在静态存储区分配,而局部数组是在栈上分配,所以大小受到的限制不一样.
*/

int cmax(int a,int b)//求最大值
{
	return a>b?a:b;
}

int main()
{
	int i,k;
	int m,n;
	
	while(scanf("%d%d",&m,&n)>0)
	{
		sum[0]=0;
		for(i=1;i<=n;i++)
		{
			cin>>k;
			sum[i]=sum[i-1]+k;//sum[i]里存的是前i个元素的和
			dp[0][i]=0;//从前i个元素中取0段,最大值为0
		}
//我们假设a[i]中存放该序列第i个值,w[i][k]表示前k个数分为i段,第k个数必须选这种情况下取得的最大值
//b[i][k]表示在前k个数中取i段这种情况下取得的最大值

//w[i][k]:前k个数分为i段,第k个数必须选;1:第k个数单独为1段;2:第k个数与前面的数连一块。w[i][k]=max(b[i-1][k-1],w[i][k-1])+a[k];
//b[i][k]:前k个数分为i段,第k个数可选可不选;1:选第k个数,2:不选第k个数。b[i][k]=max(b[i][k-1],w[i][k])
//w[i][k]=max(b[i-1][k-1],w[i][k-1])+a[k];
//b[i][k]=max(b[i][k-1],w[i][k]);
//w[i][k],b[i][i]容易求得,所以由b[i-1][k-1]->w[i][k]->b[i][k],只要知道b[0][k],全部都能成功运行!

//当从k个元素中取j段,可以分为两种情况,即第k个元素可以取,也可以不取,取,那么a[k]要么是单独为一段b[i-1][k-1]+a[k];
//要么是第k个数与前面的数连一块,即w[i][k-1]+a[k],故w[i][k]=max(b[i-1][k-1],w[i][k-1])+a[k];

//要么不取 即b[i][k]=b[i][k-1];
//综合起来,b[i][k]=max(b[i][k-1],w[i][k]);
       int t=1;
       for(i=1;i<=m;i++)//i表示在取i段,自然i<=m;
	   {
		   
		   for(k=i;k<=n;k++)//为什么k从i开始?dp[i][k](k<i)是没有意义的!
		   {
			   if(i==k)
			   dp[t][k]=w[k]=sum[k];//从k个数中取k段的最大值是前k个数的和
			   else
			   {
				   w[k]=cmax(dp[1-t][k-1],w[k-1])+sum[k]-sum[k-1];//w[k]表示k个元素取i段,a[k]必须取时的最大值
		//w[i][k]=max(b[i-1][k-1],w[i][k-1])+a[k];
				   dp[t][k]=cmax(dp[t][k-1],w[k]);//dp[t][k]表示在a[k]可取可不取这两种情况下取得的最大值
				   //自然,dp[t][k]记录的就是在前k个元素中取i段时取得的最大值!
			   }
		   }
		   t=1-t;//t在1,0之间交替变换
  //为什么要交替呢?这是为了节省空间
  //仔细观察递归式
  //w[i][k]=max(b[i-1][k-1],w[i][k-1])+a[k];
  //b[i][k]=max(b[i][k-1],w[i][k]);
  //我们发现,对于取i段,w[i][j]只与b[i-1][k-1]和w[i][k-1]有关,与之前的那一些项没有关系
  //因此我们数组可以开小一点,用更新来覆盖掉前面的值!
	   }
	   cout<<dp[m%2][n]<<endl;//奇次轮还是偶次轮

	}
	system("pause");
	return 0;
}


### HDU OJ 2044 动态规划解决方案 #### 题目概述 题目描述了一个涉及路径选择的问题,其中需要计算从起点到终点的不同走法数量。这类问题通常可以通过动态规划来高效求解。 #### 动态规划思路 定义 `dp[i][j]` 表示到达第 i 步时有 j 种不同的状态。通过构建转移方程可以逐步推导出最终结果。由于涉及到的状态数目可能较大,因此需要注意对结果取模操作以防止溢出[^3]。 #### 初始化条件 设初始位置为 dp[0][start_state]=1, 其他所有 dp[0][i]=0 (i≠start_state),表示只有起始状态下存在一种方式达到该点。 #### 转移方程 假设当前位于第 k 步,则可以从之前一步即第 k-1 步的位置转移而来: \[ \text{for } each\ state_i:\quad dp[k][state_j] += dp[k-1][state_i]\] 这里 \(state_i\) 和 \(state_j\) 是相邻两个时刻之间能够相互转换的有效状态集合中的成员。 #### 边界处理 当遍历到最后一步 n 时,累加所有可达终态的可能性作为答案,并记得对 M 取模: \[ result = (\sum_{all\ final\_states} dp[n][final\_state]) \% M \] #### Python 实现代码 ```python MOD = int(input().strip()) # 输入M值用于取模运算 N = ... # 总步数或长度由具体题目给定 K = ... # K代表其他参数如宽度等依题而异 # 初始化DP表 dp = [[0]*(WIDTH+1) for _ in range(N+1)] dp[0][START_POSITION] = 1 # 设置起点 # 进行动态规划迭代填充表格 for step in range(1, N+1): for pos in range(WIDTH+1): if pos > 0: dp[step][pos] += dp[step-1][pos-1] if pos < WIDTH: dp[step][pos] += dp[step-1][pos+1] dp[step][pos] %= MOD # 计算并输出结果 result = sum(dp[N]) % MOD print(result) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值