Machine Learning
文章平均质量分 82
lissanwen
这个作者很懒,什么都没留下…
展开
-
サポートベクターマシン(SVM)
トップページ→研究分野と周辺→ニューラルネットワーク→サポートベクターマシン(SVM)は、1995年頃にAT&TのV.Vapnikが発表したパターン識別用の教師あり機械学習方法であり、局所解収束の問題が無い長所がある。「マージン最大化」というアイデア等で汎化能力も高め、現在知られている方法としては、最も優秀なパターン識別能力を持つとされている。また、カーネル・トリックという魔法のような转载 2016-04-25 19:03:32 · 806 阅读 · 0 评论 -
推薦システムのアルゴリズム
最初に『推薦システム (recommender system) 』とは何であるかということについて,その原点の一つである ACM Communications 誌での特集 [Resnick 97] での記述を紹介する:It is often necessary to make choices without sufficient personal experience of原创 2016-04-21 22:52:00 · 455 阅读 · 0 评论 -
矩阵分解(MATRIX FACTORIZATION)在推荐系统中的应用
前言最近一段时间隐语义模型(Latent Factor Model,LFM)在推荐系统中的应用越来越广泛,本文所介绍的矩阵分解方法也是基于这个隐语义模型。这里需要说明的一点是,这里所说的矩阵分解并不是SVD,之前在这个问题纠结了很久,因为网上很多人还有周围的人都把矩阵分解就当成了SVD,实际上SVD也是矩阵分解的一种技术(SVD在推荐系统中的应用见http://blog.csd转载 2016-04-22 00:16:36 · 9734 阅读 · 3 评论 -
機械学習の Python との出会い
http://www.kamishima.net/archive/mlmpyja.pdf機械学習の基本的な手法の実装を通じて,Python による科学技術計算プログラミングについて知ることができるように,このチュートリアルを執筆しました.このチュートリアルでは,いろいろな機械学習の手法を Python で実装する過程をつうじて,NumPy や SciPy など科学技術計转载 2016-04-22 00:06:33 · 376 阅读 · 0 评论 -
連想記憶モデル(アソシアトロン)
連想記憶モデル(アソシアトロン)トップページ→研究分野と周辺→ニューラルネットワーク→連想記憶モデルは、ネットワークに記憶パターンを保持していて、記憶パターンと少し違う、或いは少し欠落したパターンを入力されても、正しい記憶パターンを出力する事が出来る。図の各マスが一つの細胞に対応し、黒は情報を出力している細胞、白は出力していない細胞となる。ここでは数字の「7」を出力している。これは转载 2016-05-26 12:09:25 · 513 阅读 · 0 评论 -
誤差逆伝播法(バック・プロパゲーション)
誤差逆伝播法(バック・プロパゲーション)トップページ→研究分野と周辺→ニューラルネットワーク→誤差逆伝播法(BP:バック・プロパゲーション)は1986年、米スタンフォード大学のラメルハート教授らが発表した多層階層型ニューラルネットワークの学習方法。入力層へ或る情報が与えられたら、出力層はそれに対応した或る情報を出力しなければならない場合の学習方法となる。最初は入力層→中間層→出力層への转载 2016-04-26 12:19:44 · 550 阅读 · 0 评论 -
Support Vector Machines (SVM) in Ruby
Support Vector Machines (SVM) in RubyBy Ilya Grigorik on January 07, 2008Your Family Guy fan-site is riding a wave of viral referrals, the community has grown tenfold in last month alone! Fi转载 2016-04-25 23:04:04 · 374 阅读 · 0 评论 -
SVD Recommendation System in Ruby
SVD Recommendation System in RubyBy Ilya Grigorik on January 15, 2007One day, a bunch of friends, who happened to be big Family Guy fans, decided to put together a site to rank and share the转载 2016-04-25 23:01:47 · 371 阅读 · 0 评论 -
ボルツマンマシン
ボルツマンマシントップページ→研究分野と周辺→ニューラルネットワーク→ボルツマンマシンは、Hinton、Sejnowskiらによって1980年代半ばに開発された、確率的に動作するニューラルネットワーク。19世紀の物理学者で統計熱力学の創始者とされる、ボルツマン(Boltzmann)の名を用いた。ネットワークの動作に温度の概念を取り入れ、最初は激しく徐々に穏やかに動作する(擬似焼きなまし转载 2016-04-25 19:08:15 · 467 阅读 · 0 评论 -
ニューラルネットワーク
ニューラルネットワークトップページ→研究分野と周辺→基本的構造ニューラルネットワーク(Nueral Network:人工神経回路)は、生物の神経細胞ネットワークの挙動を模倣する工学モデル。図の円(ノード)は或る細胞、矢印は刺激の伝播を表す。或る細胞(A)は複数の細胞(X1~Xn)から刺激を受ける。ここでX1~Xnは細胞の名であると同時に其々の細胞が出力する刺激の程度も示す。Aと他の各細转载 2016-04-25 19:05:52 · 653 阅读 · 0 评论 -
Advice for students of machine learning
点击打开链接One of my students recently asked me for advice on learning ML. Here’s what I wrote. It’s biased toward my own experience, but should generalize.My current favorite introduction is转载 2016-05-20 13:11:26 · 358 阅读 · 0 评论