n个物品,每个物品又两个属性s和f,s f∈[-1000,1000],n∈[0, 100]求所有s和f和最大的拿取方案,且所有f的和都大于等于0,所有s的和都大于等于0
将一个属性当作重量,两个都当作价值,就是一个01背包,但是有两点,s、f会为负数,最后的搭配方案必须保证s的和与f的和都为正数。
第一点可以将所有数字加100000化成正数
第二点比较难考虑,不能将两个属性加在一起当作价值当作01背包处理,直接处理得到的结果不能保证第二点。
所以,将第一个属性当作重量,第二个属性当作价值,得出当第一个属性取某个值的时候第二个属性能取得的最大值,然后遍历得到s+f的最大值
定义dp[i+1][j]:=前i个物品,第一个属性不超过j时,第二个属性取得的最大值
特别的,因为当第一个属性>=0时,dp[j] = max(dp[j], dp[j-w[i]] + v[i])(将第一个属性记作w[i], 第二个记作v[i]),j>=j-w[i],dp从右往左更新,而当w[i]<=0时,j<=j-w[i],dp从左往右更新
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN = 110, MAXV = 200020, POS = 100000, INF = 10000000;
int n, w[MAXN], v[MAXN], dp[MAXV];
int main()
{
while(scanf("%d", &n) == 1)
{
for(int i=0; i<n; ++i) scanf("%d%d", w+i, v+i);
fill(dp, dp+MAXV, -INF);
dp[POS] = 0;
for(int i=0; i<n; ++i)
{
if(w[i]>=0) for(int j=MAXV-1; j>=w[i]; --j) dp[j] = max(dp[j], dp[j-w[i]]+v[i]);
else for(int j=0; j-w[i]<MAXV; ++j) dp[j] = max(dp[j], dp[j-w[i]]+v[i]);
}
int ans = 0;
for(int i=POS; i<MAXV; ++i) if(dp[i]>=0) ans = max(ans, dp[i]-POS+i);
cout << ans << endl;
}
return 0;
}