Admiral UVA - 1658 最小费用最大流

题目链接: UVA - 1658

题目大意

一个有向加权图, v个节点, e条边, 求节点1到节点v的两条不相交的路径(除了起点终点没有公共节点), 权值和最小为多少

思路

建图, 最小费用流
因为每个节点只能经过一次, 就把除起点和终点以外其他节点都拆成两个节点 v1,v2 , 之间容量为1, 费用为0, 然后原来的边(u, v)就改成 (u2,v1) , 这样就保证了一个节点只经过一次
然后求1-v的最小费用流

代码

#include <bits/stdc++.h>

using namespace std;

const int MAXV = 3000, INF = 0X3F3F3F3F;
typedef pair<int, int> P; //first最短距离, second顶点编号
struct edge
{
    int to, cap, cost, rev;
    edge(int To, int Cap, int Cost, int Rev) :to(To), cap(Cap), cost(Cost), rev(Rev) {}
};
int V; //顶点数
vector<edge> G[MAXV];
int h[MAXV];
int dist[MAXV];
int prevv[MAXV], preve[MAXV];

void add_edge(int from, int to, int cap, int cost)
{
    G[from].push_back(edge(to, cap, cost, G[to].size()));
    G[to].push_back(edge(from, 0, -cost, G[from].size()-1));
}

//s到t流量为f的最小费用流, 不存在返回-1
int min_cost_flow(int s, int t, int f)
{
    int res = 0;
    fill(h, h+V, 0);
    while(f>0)
    {
        priority_queue<P, vector<P>, greater<P> > que;
        fill(dist, dist+V, INF);
        dist[s] = 0;
        que.push(P(0, s));
        while(!que.empty())
        {
            P p = que.top(); que.pop();
            int v = p.second;
            if(dist[v] < p.first) continue;
            for(int i=0; i<(int)G[v].size(); ++i)
            {
                edge &e = G[v][i];
                if(e.cap > 0 && dist[e.to] > dist[v]+e.cost+h[v]-h[e.to])
                {
                    dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
                    prevv[e.to] = v;
                    preve[e.to] = i;
                    que.push(P(dist[e.to], e.to));
                }
            }
        }

        if(dist[t] == INF) return -1;

        for(int v=0; v<V; v++) h[v] += dist[v];

        int d = f;
        for(int v=t; v != s; v=prevv[v])
        {
            d = min(d, G[prevv[v]][preve[v]].cap);
        }

        f -= d;

        res += d*h[t];
        for(int v=t; v!=s; v=prevv[v])
        {
            edge &e = G[prevv[v]][preve[v]];
            e.cap -= d;
            G[v][e.rev].cap += d;
        }
    }
    return res;
}
void init(int v)
{
    V = v;
    for(int i=0; i<MAXV; ++i) G[i].clear();
}

int main()
{
    int v, e, a, b, c;
    while(scanf("%d%d", &v, &e) == 2)
    {
        init((v+1)*2);
        for(int i=2; i<=v-1; ++i) add_edge(i, i+(v+1), 1, 0);

        for(int i=0; i<e; ++i)
        {
            scanf("%d%d%d", &a, &b, &c);
            if(a!=1 && a!=v) a+=v+1;
            add_edge(a, b, 1, c);
        }
        cout << min_cost_flow(1, v, 2) << endl;
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值