题目链接: UVA - 1658
题目大意
一个有向加权图, v个节点, e条边, 求节点1到节点v的两条不相交的路径(除了起点终点没有公共节点), 权值和最小为多少
思路
建图, 最小费用流
因为每个节点只能经过一次, 就把除起点和终点以外其他节点都拆成两个节点
v1,v2
, 之间容量为1, 费用为0, 然后原来的边(u, v)就改成
(u2,v1)
, 这样就保证了一个节点只经过一次
然后求1-v的最小费用流
代码
#include <bits/stdc++.h>
using namespace std;
const int MAXV = 3000, INF = 0X3F3F3F3F;
typedef pair<int, int> P; //first最短距离, second顶点编号
struct edge
{
int to, cap, cost, rev;
edge(int To, int Cap, int Cost, int Rev) :to(To), cap(Cap), cost(Cost), rev(Rev) {}
};
int V; //顶点数
vector<edge> G[MAXV];
int h[MAXV];
int dist[MAXV];
int prevv[MAXV], preve[MAXV];
void add_edge(int from, int to, int cap, int cost)
{
G[from].push_back(edge(to, cap, cost, G[to].size()));
G[to].push_back(edge(from, 0, -cost, G[from].size()-1));
}
//s到t流量为f的最小费用流, 不存在返回-1
int min_cost_flow(int s, int t, int f)
{
int res = 0;
fill(h, h+V, 0);
while(f>0)
{
priority_queue<P, vector<P>, greater<P> > que;
fill(dist, dist+V, INF);
dist[s] = 0;
que.push(P(0, s));
while(!que.empty())
{
P p = que.top(); que.pop();
int v = p.second;
if(dist[v] < p.first) continue;
for(int i=0; i<(int)G[v].size(); ++i)
{
edge &e = G[v][i];
if(e.cap > 0 && dist[e.to] > dist[v]+e.cost+h[v]-h[e.to])
{
dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
que.push(P(dist[e.to], e.to));
}
}
}
if(dist[t] == INF) return -1;
for(int v=0; v<V; v++) h[v] += dist[v];
int d = f;
for(int v=t; v != s; v=prevv[v])
{
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d*h[t];
for(int v=t; v!=s; v=prevv[v])
{
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
void init(int v)
{
V = v;
for(int i=0; i<MAXV; ++i) G[i].clear();
}
int main()
{
int v, e, a, b, c;
while(scanf("%d%d", &v, &e) == 2)
{
init((v+1)*2);
for(int i=2; i<=v-1; ++i) add_edge(i, i+(v+1), 1, 0);
for(int i=0; i<e; ++i)
{
scanf("%d%d%d", &a, &b, &c);
if(a!=1 && a!=v) a+=v+1;
add_edge(a, b, 1, c);
}
cout << min_cost_flow(1, v, 2) << endl;
}
return 0;
}