题目链接:Mosaic HDU - 4819
题目大意
一个n*n的矩阵, 让你求其中一个矩形区域中的最大值和最小值, 并更新其中的一个位置的值
思路
二维线段树
代码
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
#include <queue>
#include <vector>
using namespace std;
const int maxn = 1e3 + 10, inf = 0x3f3f3f3f;
int locx[maxn], locy[maxn];//x坐标和y坐标在线段树中对应的叶子节点的下标
struct Nodey//代表一个点
{
int l, r, ma, mi;
};
struct Nodex//代表一条x方向的一维线段树
{
int l, r;
Nodey sty[maxn << 2];
void build(int rt, int L, int R)
{
sty[rt].l = L;
sty[rt].r = R;
sty[rt].ma = -inf;
sty[rt].mi = inf;
if (L == R)
{
locy[L] = rt;
return ;
}
int mid = (L + R) >> 1;
build(rt << 1, L, mid);
build((rt << 1) | 1, mid + 1, R);
}
int queryMin(int rt, int L, int R)
{
if (sty[rt].l == L && sty[rt].r == R)
return sty[rt].mi;
int mid = (sty[rt].l + sty[rt].r) >> 1;
if (mid < L) return queryMin((rt << 1) | 1, L, R);
else if (mid >= R) return queryMin(rt << 1, L, R);
else return min(queryMin((rt << 1) | 1, mid+1, R), queryMin(rt << 1, L, mid));
}
int queryMax(int rt, int L, int R)
{
if (sty[rt].l == L && sty[rt].r == R)
return sty[rt].ma;
int mid = (sty[rt].l + sty[rt].r) >> 1;
if (mid < L) return queryMax((rt << 1) | 1, L, R);
else if (mid >= R) return queryMax(rt << 1, L, R);
else return max(queryMax((rt << 1) | 1, mid+1, R), queryMax(rt << 1, L, mid));
}
} stx[maxn << 2];
int n;
void build(int rt, int l, int r)
{
stx[rt].l = l;
stx[rt].r = r;
stx[rt].build(1, 1, n);
if (l == r)
{
locx[l] = rt;
return ;
}
int mid = (l + r) >> 1;
build(rt << 1, l, mid);
build((rt << 1) | 1, mid + 1, r);
}
void update(int x, int y, int v)
{
x = locx[x], y = locy[y];
stx[x].sty[y].mi = stx[x].sty[y].ma = v;
for (int i = x; i; i >>= 1)
{
for (int j = y; j; j >>= 1)
{
if (i == x && j == y) continue;
if (j == y) // x, y -> 2x, y, when double the length of x
{
stx[i].sty[j].mi = min(stx[i << 1].sty[j].mi, stx[(i << 1) | 1].sty[j].mi);
stx[i].sty[j].ma = max(stx[i << 1].sty[j].ma, stx[(i << 1) | 1].sty[j].ma);
}
else
{
stx[i].sty[j].mi = min(stx[i].sty[j << 1].mi, stx[i].sty[(j << 1) | 1].mi);
stx[i].sty[j].ma = max(stx[i].sty[j << 1].ma, stx[i].sty[(j << 1) | 1].ma);
}
}
}
}
int queryMin(int rt, int x1, int x2, int y1, int y2)
{
if (stx[rt].l == x1 && stx[rt].r == x2)
return stx[rt].queryMin(1, y1, y2);
int mid = (stx[rt].l + stx[rt].r) >> 1;
if (x1 > mid) return queryMin((rt << 1) | 1, x1, x2, y1, y2);
else if (x2 <= mid) return queryMin(rt << 1, x1, x2, y1, y2);
else return min(queryMin((rt << 1) | 1, mid+1, x2, y1, y2),
queryMin(rt << 1, x1, mid, y1, y2));
}
int queryMax(int rt, int x1, int x2, int y1, int y2)
{
if (stx[rt].l == x1 && stx[rt].r == x2)
return stx[rt].queryMax(1, y1, y2);
int mid = (stx[rt].l + stx[rt].r) >> 1;
if (x1 > mid) return queryMax((rt << 1) | 1, x1, x2, y1, y2);
else if (x2 <= mid) return queryMax(rt << 1, x1, x2, y1, y2);
else return max(queryMax((rt << 1) | 1, mid+1, x2, y1, y2),
queryMax(rt << 1, x1, mid, y1, y2));
}
int main()
{
int T, cas = 1;
for (scanf("%d", &T); T; --T)
{
printf("Case #%d:\n", cas++);
scanf("%d", &n);
build(1, 1, n);
for (int i = 1; i <= n; ++i)
{
for (int j = 1; j <= n; ++j)
{
int t;
scanf("%d", &t);
update(i, j, t);
}
}
int q, x, y, L;
scanf("%d", &q);
while (q--)
{
scanf("%d%d%d", &x, &y, &L);
int x1 = max(x - L / 2, 1);
int x2 = min(x + L / 2, n);
int y1 = max(y - L / 2, 1);
int y2 = min(y + L / 2, n);
int Max = queryMax(1, x1, x2, y1, y2);
int Min = queryMin(1, x1, x2, y1, y2);
int t = (Max + Min) / 2;
printf("%d\n", t);
update(x, y, t);
}
}
return 0;
}
网上的一个模板
struct Nodey {
int ly, ry, val, Max, Min, sum;//元素 最大值 最小值 元素和
};
int nx, ny;//横长 竖长
int posx[MAXN], posy[MAXN];
struct Nodex {
int lx, rx;
Nodey treey[MAXN<<2];
void Build_y(int o, int l, int r) {
treey[o].ly = l; treey[o].ry = r;
treey[o].Max = 0; treey[o].Min = INF;
treey[o].sum = 0; treey[o].val = 0;
if(l == r) {
posy[l] = o;
return ;
}
int mid = (l + r) >> 1;
Build_y(ll, l, mid);
Build_y(rr, mid+1, r);
}
int Query_y(int o, int y1, int y2, int op) {
if(treey[o].ly == y1 && treey[o].ry == y2) {
if(op == 0) return treey[o].Max;
if(op == 1) return treey[o].Min;
if(op == 2) return treey[o].sum;
}
int mid = (treey[o].ly + treey[o].ry) >> 1;
if(y2 <= mid) return Query_y(ll, y1, y2, op);
else if(y1 > mid) return Query_y(rr, y1, y2, op);
else {
if(op == 0) return max(Query_y(ll, y1, mid, op), Query_y(rr, mid+1, y2, op));
if(op == 1) return min(Query_y(ll, y1, mid, op), Query_y(rr, mid+1, y2, op));
if(op == 2) return Query_y(ll, y1, mid, op) + Query_y(rr, mid+1, y2, op);
}
}
};
Nodex treex[MAXN<<2];
void Build_x(int o, int l, int r) {
treex[o].lx = l; treex[o].rx = r;
treex[o].Build_y(1, 1, ny);
if(l == r) {
posx[l] = o;
return ;
}
int mid = (l + r) >> 1;
Build_x(ll, l, mid);
Build_x(rr, mid+1, r);
}
int Query_x(int o, int x1, int x2, int y1, int y2, int op) {
if(treex[o].lx == x1 && treex[o].rx == x2) {
return treex[o].Query_y(1, y1, y2, op);
}
int mid = (treex[o].lx + treex[o].rx) >> 1;
if(x2 <= mid) return Query_x(ll, x1, x2, y1, y2, op);
else if(x1 > mid) return Query_x(rr, x1, x2, y1, y2, op);
else {
if(op == 0) return max(Query_x(ll, x1, mid, y1, y2, op), Query_x(rr, mid+1, x2, y1, y2, op));
if(op == 1) return min(Query_x(ll, x1, mid, y1, y2, op), Query_x(rr, mid+1, x2, y1, y2, op));
if(op == 2) return Query_x(ll, x1, mid, y1, y2, op) + Query_x(rr, mid+1, x2, y1, y2, op);
}
}
void PushUpy(int x, int y) {
treex[x].treey[y].Max = max(treex[x].treey[y<<1].Max, treex[x].treey[y<<1|1].Max);
treex[x].treey[y].Min = min(treex[x].treey[y<<1].Min, treex[x].treey[y<<1|1].Min);
treex[x].treey[y].sum = treex[x].treey[y<<1].sum + treex[x].treey[y<<1|1].sum;
}
void PushUpx(int x, int y) {
treex[x].treey[y].Max = max(treex[x<<1].treey[y].Max, treex[x<<1|1].treey[y].Max);
treex[x].treey[y].Min = min(treex[x<<1].treey[y].Min, treex[x<<1|1].treey[y].Min);
treex[x].treey[y].sum = treex[x<<1].treey[y].sum + treex[x<<1|1].treey[y].sum;
}
void Change(int x, int y, int v) {
treex[x].treey[y].Max = v;
treex[x].treey[y].Min = v;
treex[x].treey[y].sum = v;
treex[x].treey[y].val = v;
}
void Update(int x, int y, int v) {//单点更新
for(int i = posx[x]; i ; i >>= 1) {
for(int j = posy[y]; j ; j >>= 1) {
if(i == posx[x] && j == posy[y]) {
Change(posx[x], posy[y], v);
continue;
}
PushUpy(i, j);
}
if(i == posx[x]) continue;
for(int j = posy[y]; j ; j >>= 1) {
PushUpx(i, j);
}
}
}
int Sum(int x, int y) {//求 (x, y)对应节点到根路径的元素之和
int sum = 0;
for(int i = posx[x]; i ; i >>= 1) {
for(int j = posy[y]; j ; j >>= 1) {
sum += treex[i].treey[j].val;
}
}
return sum;
}