卷积层.
- 由于卷积层在反向传播时梯度计算更复杂,因此首先介绍它。在下面的记号中,我们以 z z z 代表每一层未经过激活函数输出的结果, s i g m a ( z ) sigma(z) sigma(z) 表示激活函数,令 a = σ ( z ) a=\sigma(z) a=σ(z)表示经过激活函数后的输出结果。
- 另外,在数学文献中, ∗ * ∗ 是卷积的标准符号,下面若无特殊说明,均遵循该规定。
- 单个卷积核计算过程示意图如下所示,其通道数为 1
池化层
max pooling的前向传播是把patch中最大的值传递给后一层,而其他像素的值直接被舍弃掉。那么反向传播也就是把梯度直接传给前一层某一个像素,而其他像素不接受梯度,也就是为0。所以max pooling操作和mean pooling操作不同点在于需要记录下池化操作时到底哪个像素的值是最大,也就是max id,这个变量就是记录最大值所在位置的,因为在反向传播中要用到,那么假设前向传播和反向传播的过程就如下图所示 :
![在这里插入图片描述](https://img-blog.csdnimg.cn/ca5ecf3573be430da8a867b0f76d2461.png
参考1:https://blog.csdn.net/weixin_43702920/article/details/107778563
参考2:https://blog.csdn.net/weixin_44246009/article/details/119379516