代码随想录算法训练营Day22 | 491.递增子序列,46.全排列,47.全排列 II ,332. 重新安排行程,51. N皇后,37. 解数独,总结

第七章 回溯算法 part04

491.递增子序列 

本题和大家刚做过的 90.子集II 非常像,但又很不一样,很容易掉坑里。 代码随想录

视频讲解:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili

# 491
class Solution:
    def findSubsequences(self, nums):
        result = []
        path = []
        self.backtracking(nums, 0, path, result)
        return result
    
    def backtracking(self, nums, startIndex, path, result):
        if len(path) > 1:
            result.append(path[:])  # 注意要使用切片将当前路径的副本加入结果集
            # 注意这里不要加return,要取树上的节点
        
        uset = set()  # 使用集合对本层元素进行去重
        for i in range(startIndex, len(nums)):
            if (path and nums[i] < path[-1]) or nums[i] in uset:
                continue
            
            uset.add(nums[i])  # 记录这个元素在本层用过了,本层后面不能再用了
            path.append(nums[i])
            self.backtracking(nums, i + 1, path, result)
            path.pop()

46.全排列 

本题重点感受一下,排列问题 与 组合问题,组合总和,子集问题的区别。 为什么排列问题不用 startIndex 代码随想录

视频讲解:组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列_哔哩哔哩_bilibili

# 46
class Solution:
    def permute(self, nums):
        result = []
        self.backtracking(nums, [], [False] * len(nums), result)
        return result

    def backtracking(self, nums, path, used, result):
        if len(path) == len(nums):
            result.append(path[:])
            return
        for i in range(len(nums)):
            if used[i]:
                continue
            used[i] = True
            path.append(nums[i])
            self.backtracking(nums, path, used, result)
            path.pop()
            used[i] = False

47.全排列 II 

本题 就是我们讲过的 40.组合总和II 去重逻辑 和 46.全排列 的结合,可以先自己做一下,然后重点看一下 文章中 我讲的拓展内容: used[i - 1] == true 也行,used[i - 1] == false 也行 代码随想录

视频讲解:回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili

#c 47
class Solution:
    def permuteUnique(self, nums):
        nums.sort()  # 排序
        result = []
        self.backtracking(nums, [], [False] * len(nums), result)
        return result

    def backtracking(self, nums, path, used, result):
        if len(path) == len(nums):
            result.append(path[:])
            return
        for i in range(len(nums)):
            if (i > 0 and nums[i] == nums[i - 1] and not used[i - 1]) or used[i]:
                continue
            used[i] = True
            path.append(nums[i])
            self.backtracking(nums, path, used, result)
            path.pop()
            used[i] = False

下面这三道题都非常难,建议大家一刷的时候 可以适当选择跳过。 

因为 一刷 也不求大家能把这么难的问题解决,大家目前能了解一下题目的要求,了解一下解题思路,不求能直接写出代码,先大概熟悉一下这些题,二刷的时候,随着对回溯算法的深入理解,再去解决如下三题。 

332.  重新安排行程(可跳过) ⌛️

本题很难,一刷的录友刷起来 比较费力,可以留给二刷的时候再去解决。

本题没有录制视频,当初录视频是按照 《代码随想录》出版的目录来的,当时没有这道题所以就没有录制。

代码随想录

51.  N皇后(适当跳过) ⌛️

N皇后这道题目还是很经典的,一刷的录友们建议看看视频了解了解大体思路 就可以 (如果没时间本次就直接跳过) ,先有个印象,二刷的时候重点解决。 

代码随想录

视频讲解:这就是传说中的N皇后? 回溯算法安排!| LeetCode:51.N皇后_哔哩哔哩_bilibili

37.  解数独(适当跳过) ⌛️

同样,一刷的录友们建议看看视频了解了解大体思路(如果没时间本次就直接跳过),先有个印象,二刷的时候重点解决。 

代码随想录

视频讲解:回溯算法二维递归?解数独不过如此!| LeetCode:37. 解数独_哔哩哔哩_bilibili

总结

回溯总结 

刷了这么多回溯算法的题目,可以做一做总结了!

代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值