给定一个未排序的数组,求如果数组排序之后,相邻数的最大差值。要求时间复杂度为O(n),且要求不能用非基于比较的排序。
首先,这个问题明显限制了不能使用直接排序的方式求解。因为基于比较的排序时间复杂度最低也是O(nlogn),而且题目限制不能使用非基于比较的排序。所以我们需要另想思路。
我们可以看到上面的解题思路,首先我们遍历一次数组,得到数组中的max和min。把(max-min)切分为N+1个桶,最大差值必然是两个相邻桶的(右桶的min-左桶的max)。
为什么呢?为什么同一个桶里面不会存在最大差值呢?
根据抽屉原理:把N个苹果放到N+1个抽屉里面,必然至少有一个抽屉不存在苹果。
而我们这里,一个桶代表一个差值,而我们这样设计的结果就是,必然存在一个空桶。所以这个最大差值必然大于一个桶代表的范围。
有的同学可能要问了:为什么我们不直接找空桶,空桶附近的不就是最大差值吗?
我们考虑这样一种情况:假设我们有两个相邻的桶(中间没有空桶){5 , 8} {8,11},假设我们得到的结果中,{5,8}这个桶得到的max是5,{8,11}得到的min是11,那么我们的差值就是6了,而一