log4j - 日志输出工具 的使用配置简洁实例

实测,log4j 比 system.out.println 的性能好很多,尤其是大量输出语句时。

--------------------------------------------------------------------------------------------------

下载地址:

当前版本,2.0 beta3

jar :http://www.apache.org/dyn/closer.cgi/logging/log4j/2.0-beta3/apache-log4j-2.0-beta3-bin.zip

src:http://mirror.bit.edu.cn/apache/logging/log4j/2.0-beta3/apache-log4j-2.0-beta3-src.zip

实例版本:

jar :http://archive.apache.org/dist/logging/log4j/1.2.17/log4j-1.2.17.jar

src:http://archive.apache.org/dist/logging/log4j/1.2.17/log4j-1.2.17-sources.jar

--------------------------------------------------------------------------------------------------

实例开始(示例版本:1.2.17):

一、配置文件 log4j.properties

#log4j.rootLogger,第一个参数标示日志记录的优先级,只有等于、大于这个级别的日志才会被输出。
#log4j的日志的级别共有以下几种:OFF、FATAL、ERROR、WARN、INFO、DEBUG、ALL,
#但是我们一般只是用ERROR、WARN、INFO、DEBUG这四种(这里按照从高到低给出)。
log4j.rootLogger=DEBUG,console 

#将日志输出到控制台 
log4j.appender.console=org.apache.log4j.ConsoleAppender
#日志输出的信息布局
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.Target=System.out 
#日志输出格式:%d{时间格式},%c 类路径,%n换行,%m 打印信息
#中文需 转为 unicode 
#log4j.appender.console.layout.ConversionPattern=%n[\u65F6\u95F4] %d{yyyy-MM-dd HH\:mm\:ss}  [\u8DEF\u5F84] %c  %n[\u4FE1\u606F] %m%n
log4j.appender.console.layout.ConversionPattern=%n[\u65F6\u95F4] %d{yyyy-MM-dd HH\:mm\:ss}   [\u4FE1\u606F] %m 

二、web工程部署使用

主要方式1、 log4j.properties 放在src下

			String class_path =  getClass().getResource("/").getPath();
			PropertyConfigurator.configure(class_path+"log4j.properties");//获取 log4j 配置文件
			Logger logger = Logger.getLogger(Phrase_wordsServlet.class ); //获取log4j的实例,Phrase_wordsServlet是当前java文件的名字
			logger.debug(">>----------已删除用户:"+u_id_delete); 

主要方式2、 log4j.properties 放在lib里面 (跟 log4j.jar 包同级 )

		String rootdir=System.getProperty("user.dir");//获取 工程根路径
		PropertyConfigurator.configure(rootdir+"\\WebRoot\\WEB-INF\\lib\\log4j.properties");//获取 log4j 配置文件
		//PropertyConfigurator.configure("C:\MyEclipse9\Workspaces\finance\WebRoot\WEB-INF\lib\log4j.properties"); 
		Logger logger = Logger.getLogger(Logger_Test.class ); //获取log4j的实例
	        logger.debug("控制台调试信息--debug ");//7


--------------------------------------------------------------------------------------------------

附件:unicode 和中文 互转工具  (log4j.properties配置文件里面  “\u65F6\u95F4” 表示“时间”)


深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值