1.朴素贝叶斯算法介绍
算法本质的是贝叶斯公式 p ( x ∣ y ) = p ( y ∣ x ) p ( x ) p ( y ) p(x \mid y)=\dfrac{p(y \mid x)p(x)}{p(y)} p(x∣y)=p(y)p(y∣x)p(x),计算在已知数据的条件下,求各个分类的后验概率,数据的分类结果是概率最大的那个分类。
朴素一词的来源是假设各特征之间相互独立。因此
p ( x ⃗ ∣ c 1 ) = p ( x 1 , x 2 . . . x n ∣ c 1 ) = p ( x 1 ∣ c 1 ) ∗ p ( x 2 ∣ c 1 ) . . . p ( x 3 ∣ c 1 ) p(\vec x\mid c_1) = p(x_1,x_2...x_n|c1) = p(x_1|c1)*p(x_2|c1)...p(x_3|c1) p(