题目
怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。
而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。
不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。
初始时,怪盗基德可以在任何一幢建筑的顶端。
他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。
因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。
他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。
请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?
输入格式
输入数据第一行是一个整数K,代表有K组测试数据。
每组测试数据包含两行:第一行是一个整数N,代表有N幢建筑。第二行包含N个不同的整数,每一个对应一幢建筑的高度h,按照建筑的排列顺序给出。
输出格式
对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。
数据范围
1≤K≤100
1≤N≤100
0<h<10000
输入样例:
3
8
300 207 155 299 298 170 158 65
8
65 158 170 298 299 155 207 300
10
2 1 3 4 5 6 7 8 9 10
输出样例:
6
6
9
思路
题目简化:
在数组中寻找最长上升子序列或最长下降子序列,输出最大长度。
两层循环,循环两次
寻找最长上升子序列时:从左到右依次遍历数组中每个值,遍历到第 i 个值的时候,寻找 i 值左边的所有值,如果第 j 个数的值小于h[ i ] 则 ans[ i ]保留(ans[i]与ans[j] + 1)中的最大值。
寻找最长下降子序列时:从左到右依次遍历数组中每个值,遍历到第 i 个值的时候,寻找 i 值左边的所有值,如果第 j 个数的值大于h[ i ] 则 ans[ i ]保留(ans[i]与ans[j] + 1)中的最大值。
代码
v#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int n;
int h[N];
int ans[N];
void solve()
{
cin >> n;
for(int i = 1; i <= n; i ++) cin >> h[i];
for(int i = 1; i <= n; i ++) ans[i] = 1;
int res = 0;
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j < i; j ++)
{
if(h[j] < h[i]) ans[i] = max(ans[i],ans[j] + 1);
}
res = max(res,ans[i]);
}
for(int i = 1; i <= n; i ++) ans[i] = 1;
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j < i; j ++)
{
if(h[j] > h[i]) ans[i] = max(ans[i],ans[j] + 1);
}
res = max(res,ans[i]);
}
cout << res << endl;
}
int main()
{
int t;
cin >> t;
while(t --) solve();
return 0;
}
难度:简单 |
时/空限制:1s / 64MB |
总通过数:20548 |
总尝试数:29169 |
来源:《信息学奥赛一本通》 |
算法标签 |